Книги: Теория тренировки Протасенко
l
lifter
Введение
Ни для кого из любителей "железной игры", наверное, не секрет, что теория тренировочного процесса находится сегодня в довольно-таки неприглядном состоянии. Все спортивные журналы полны статей с многочисленными супермодными рекомендациями в отношении тренинга, - но рекомендации эти, увы, крайне противоречивы. "Движение с отягощением должно быть мощным и взрывным", - безапелляционно утверждают одни авторы. "К успеху приводит только медленное подконтрольное движение", - не менее решительно заявляют другие. "Хочешь нарастить массу - работай с большими весами", - дают уверенные указания третьи специалисты. "Вес снаряда не имеет значения. Главное - это техника и ощущение работы мышцы", - противоречат им их оппоненты. Тренироваться шесть дней в неделю утром и вечером советует Арнольд Шварценеггер. Майк Ментцер же запрещает своим ученикам появляться в зале чаще двух раз в неделю. Профессионалы бодибилдинга расписывают для одного только бицепса комплексы из шести упражнений. В свою очередь, МакРоберт призывает вообще не тренировать руки изолированными упражнениями. Пауэрлифтёры во время своих циклов почти никогда не работают до отказа, Ментцер же уверяет, что работа не до отказа - это зря потраченное время. А профи из команды Джо Вейдера вообще советуют идти гораздо дальше отказа с помощью форсированных повторений и так называемого "стриптиза".
Это перечисление можно было бы ещё продолжать и продолжать, но здесь обращает на себя внимание не само обилие взаимоисключающих принципов тренинга, а тот странный факт, что буквально у каждого из этих принципов находятся свои сторонники, сумевшие получить от его использования результат. Данный факт способствовал распространению мнения, что цельной, научной теории тренинга не может быть в принципе. Я же утверждаю, что такая теория есть. И терпеливый читатель вскоре сможет сам в этом убедиться.
Слабым местом любой нынешней методики тренинга является отсутствие у её авторов чёткого представления о причинах роста мышц. Подавляющее большинство специалистов даже не задумывается над этим вопросом, остальные ограничиваются одной лишь умозрительной идеей о тренировочном стрессе. Полагая, что такое легкомыслие является бедой только популярной спортивной литературы, я стал искать ответ на вопрос о причинах роста мышц в серьёзных научных трудах из области физиологии мышечной деятельности. Однако меня постигло разочарование: точными сведениями о том, что именно происходит в мышце во время работы с предельными нагрузками, современная наука, увы, не располагает - или, во всяком случае, не спешит поделиться этими сведениями с широким кругом читателей. Связано это, на мой взгляд, в первую очередь с тем, что основные исследования физиологов всегда были направлены на обеспечение потребностей, так сказать, "классического" спорта, основой которого является тренировка выносливости (работоспособности). Максимум, что мне удалось обнаружить - это исследование структурных изменений в мышцах крыс после получасового интенсивного плавания или бега в колесе. Понятно, что по таким данным тяжело судить о реакции мышц атлета на то напряжение, поддерживать которое мышцы способны всего лишь несколько секунд.
Потеряв надежду найти готовые ответы, я решил самостоятельно, путём анализа всех известных мне сведений, смоделировать те процессы, протекающие в мышцах при нагрузках, близких к предельным. Разработанная мною в конце концов модель воздействия тренировки на мышечный аппарат оказалась способной описать практически все известные эмпирические факты и позволила впервые найти ответы на ряд вопросов, не получивших до настоящего момента времени сколько-нибудь приемлемого объяснения со стороны спортивных физиологов. Например, мне удалось в общих чертах на молекулярном уровне смоделировать механизм возникновения микротравм мышечного волокна (источников посттренировочной боли и общего стрессового воздействия на организм), указать точные условия их возникновения, а также найти причины адаптации мышц к нагрузке и объяснить феномен снижения посттренировочной боли при регулярных тренировках. Ознакомиться с данной информацией читатель сможет во второй части статьи, в которой, собственно, и изложена суть моей теории. На основе этой теории в третьей части статьи я постарался объяснить, почему работает "Супертренинг" Ментцера, тренировки в котором ограничиваются всего лишь одним подходом в упражнении, и для чего предназначены и как работают интервальные (многоподходные) тренировки, а также в чём секрет лифтёрского или штангистского силового цикла, и вообще, чем определяется воздействие большинства иных тренировочных методик и приёмов. Для неподготовленного читателя материал второй части статьи окажется, скорее всего, слишком сложным для понимания, поэтому я рекомендую внимательно изучить сначала первую часть статьи, в которой в более-менее доступной форме изложены основные сведения о строении и принципах функционирования мышц.
Должен заметить, что сведения, приведённые в популярной литературе и даже в большинстве учебных пособий по физиологии мышечной деятельности для спортивных ВУЗов, с которыми мне удалось ознакомиться, являются неполными. Процессы синтеза белка клеткой в данной литературе, как правило, даже не рассматриваются. Судя по всему, именно по этой причине очень многие люди, считающие себя специалистами в области так называемой "химии", на самом деле не имеют правильного представления об анаболическом или, другими словами, восстановительном механизме. Эти "специалисты", любят рассуждать о рецепторах стероидных гормонов, об их "забивке", о "повышении чувствительности" оных рецепторов, об образовании новых рецепторов и т.д., даже не задумываясь о том, что эффект стероидных гормонов реализуется через воздействие на генетический аппарат, заключённый в ядре клетки. Тем самым именно ядро и является конечным рецептором тестостерона, кортизола и ряда других гормонов. Не задумываются они и о том, что важнейшее влияние на объем мышечной ткани оказывает именно количество клеточных ядер в мышце. Конечно, ядра мышечных клеток, равно как и сама мышечная клетка, не способны к делению и размножению, но спортивные физиологи как будто намеренно игнорируют информацию о существовании в мышечных волокнах так называемых "клеток-сателлит" (несформированных мышечных клеток), сохраняющих способность к делению на протяжении всей жизни человека - благодаря чему и обеспечивается увеличение количества мышечных ядер и регенерация мышечных волокон при повреждениях мышечной ткани. Как этот факт может повлиять на рост объёма и силы мышц в результате тренировки, читатель также сможет узнать из второй части моей работы. Итак, повторяю, мне удалось создать более-менее цельную теорию тренинга, на физиологическом уровне объясняющую (конечно, в общих чертах) воздействие тренировки на мышечный аппарат человека и позволяющую найти ответы на большинство вопросов, связанных с улучшением характеристик мышц.
Предвижу сомнения скептиков: как это человек без специального образования посмел залезть в самые дебри новой для себя науки, да ещё набрался наглости выносить на суд публики свои теории? Но что же ещё остаётся делать нам, любителям "железной игры", если ее профессионалы не спешат предложить решение волнующих нас проблем? Ну конечно остаётся только полагаться на собственные силы: в конце концов, как писали классики, "спасение утопающих - дело рук самих утопающих".
Часть I.
Что нужно знать о строении и принципе работы мышц.
Различают три типа мышечной ткани: скелетную, гладкую и сердечную. Функция сердечной ткани понятна из названия, и её роль, я думаю, объяснять не надо. О существовании гладких мышц мы зачастую даже не догадываемся, так как это мышцы внутренних органов. И мы лишены возможности напрямую управлять ими (равно как, впрочем, и сердечной мышцей). Между тем, именно гладкие мышцы сужают просвет сосудов, производят сокращение кишечника, способствуя перемещению пищи, и выполняют ещё множество других жизненно важных функций. В свою очередь, задача скелетных мышц - перемещение частей скелета друг относительно друга (отсюда и название). Именно эти самые мышцы мы с таким упорством пытаемся нарастить на своём теле, и именно их строение и свойства я буду рассматривать в дальнейшем.
Заглянем в клетку
Как известно, все ткани организма имеют клеточную структуру. Не представляют исключения в этом плане и мышцы. Поэтому мне придётся провести краткий экскурс в цитологию - науку о клетке, и напомнить читателям о роли и свойствах основных структур клетки. В грубом приближении клетка состоит из двух важнейших, взаимосвязанных структур - цитоплазмы и ядра.
Ядро содержит в себе молекулу ДНК, в которой заключена вся наследственная информация. ДНК - это полимер, закрученный двойной спиралью. Каждая одинарная спираль ДНК состоит из огромного количества четырёх видов мономеров, называемых нуклеотидами. Последовательность нуклеотидов в цепочке кодирует все белки организма. Ядро, помимо хранения всей наследственной информации, ответственно также и за размножение клетки - деление. Деление клетки начинается с разрывания двойной молекулы ДНК на две отдельные цепочки нуклеотидов, каждая из которых способна достроить себе пару из набора тех нуклеотидов, которые находятся в свободном состоянии внутри клетки, чтобы тем самым превратиться вновь в двойную молекулу ДНК. Таким образом, количество ДНК в ядре удваивается, вслед за этим на две части делится ядро, а за ним и вся остальная клетка.
Цитоплазма - это всё то, что в клетке окружает ядро. Цитоплазма состоит из цитозоли (клеточной жидкости), в которую включены различные органеллы (части клетки), такие, например, как митохондрии, лизосомы, рибосомы и пр.
Митохондрии являются энергетическими станциями клетки. В них с помощью различных ферментов происходит окисление аминокислот, углеводов и жирных кислот. Энергия, выделяющаяся при этом окислении, идёт на присоединение третьей фосфатной группы к молекуле аденезиндифосфата (АДФ) с образованием аденезинтрифосфата (АТФ) - универсального источника энергии для всех процессов, протекающих в клетке. Отсоединяя третью фосфатную группу и вновь превращаясь в АДФ, АТФ выделяет запасённую ранее энергию.
Ферменты или энзимы - это вещества белковой природы, в сотни и тысячи раз увеличивающие скорость протекание химических реакций. Практически все жизненно важные химические процессы в организме происходят только в присутствии специфических ферментов.
Лизосомы - округлые пузырьки, содержащие около 50 ферментов. Лизосомные ферменты расщепляют поглощённый клеткой материал и собственные внутренние структуры клетки (автолизис). Лизосомы, сливаясь в фагосомы, способны переваривать целые органеллы, подлежащие дезинтеграции.
Рибосомы - это такие органеллы, внутри которых происходит сборка белковой молекулы.
Клеточная мембрана представляет собой просто оболочку клетки. Мембрана обладает избирательной проницаемостью, то есть способностью пропускать одни вещества и задерживать другие. Задача мембраны - сохранять постоянство внутренней среды клетки.
Строение мышцы
Структурно-функциональной единицей скелетной мышцы является симпласт или мышечное волокно - огромная клетка, имеющая форму протяжённого цилиндра с заострёнными концами (в дальнейшем под наименованиями "симпласт", "мышечное волокно" и "мышечная клетка" следует понимать один и тот же объект). Длина мышечной клетки чаще всего соответствует длине целой мышцы и достигает 14 см, а диаметр равен нескольким сотым долям миллиметра. Мышечное волокно, как и любая клетка, имеет оболочку - сарколему. Снаружи отдельные мышечные волокна окружены рыхлой соединительной тканью, которая содержит кровеносные и лимфатические сосуды, а также нервные волокна. Группы мышечных волокон образуют пучки. Пучки, в свою очередь, объединяются в целую мышцу, "упакованную" в плотный чехол соединительной ткани, который переходит на концах мышцы в сухожилия, крепящиеся к костям. Усилие, вызываемое сокращением мышечного волокна, передаётся через сухожилия костям скелета и приводит их в движение.
Рис.1
Управление сократительной активностью мышцы осуществляется с помощью большого числа мотонейронов (рис. 2) - нервных клеток, тела которых лежат в спинном мозге, а длинные ответвления, аксоны, в составе двигательного нерва подходят к мышце. Войдя в мышцу, аксон разветвляется на множество веточек, каждая из которых подведена к отдельному волокну. Таким образом, один мотонейрон иннервирует целую группу волокон (такназываемую "нейромоторную единицу"), которая работает как единое целое.
Рис.2.
Мышца состоит из множества нейромоторных единиц и способна работать не только всей своей массой, но также и отдельными пучками, что позволяет регулировать силу и скорость сокращения. Для понимания механизма сокращения мышцы необходимо рассмотреть внутреннее строение мышечного волокна. От большинства других клеток оно отличается, прежде всего, своей многоядерностью. Связано это с особенностями формирования волокна при развитии плода. Мышечное волокно образуется на этапе эмбрионального развития организма из клеток-предшественниц - миобластов. Миобласты (неоформленные мышечные клетки) интенсивно делятся, сливаются друг с другом и образуют мышечную трубочку с центральным расположением ядер. Затем в этой трубочке начинается синтез миофибрилл - сократительных элементов мышечного волокна (см. ниже). Завершается формирование мышечного волокна миграцией ядер на периферию. Ядра мышечного волокна к этому времени уже теряют способность к делению, и за ними остаётся только функция хранения информации для синтеза белка. Но не все миобласты идут по пути слияния в мышечные трубочки, часть из них обособляется в виде клеток-сателлитов, располагающихся на поверхности мышечного волокна, а именно в сарколеме, между плазмолемой и базальной мембраной - составными частями сарколемы. Клетки-сателлиты, в отличие от мышечных волокон, не утрачивают способности к делению на протяжении всей своей жизни, что обеспечивает увеличение общей массы волокон и их обновление. Восстановление мышечных волокон при повреждении мышцы возможно только благодаря клеткам-сателлитам. При гибели волокна скрывающиеся в его оболочке клетки-сателлиты активизируются, делятся и преобразуются в миобласты. Миобласты сливаются друг с другом и образуют новые мышечные трубочки, в которых затем начинается сборка миофибрилл. То есть при регенерации полностью повторяются события эмбрионального (внутриутробного) развития мышцы (Р.П. Женевская Э.Г., Улугбеков и Ю.А. Челышев)
Помимо многоядерности, отличительной чертой мышечного волокна является наличие в цитоплазме (у мышечного волокна её принято называть саркоплазмой) тонких волоконец - миофибрилл (рис. 1), расположенных вдоль клетки и уложенных параллельно. Число миофибрилл в волокне достигает двух тысяч. Миофибриллы являются сократительными элементами мышечной клетки и обладают способностью уменьшать свою длину при поступлении нервного импульса, стягивая тем самым мышечное волокно. Под микроскопом видно, что миофибрилла имеет поперечную исчерченность - чередующиеся тёмные и светлые полосы. При сокращении миофибриллы светлые участки уменьшают свою длину, а при полном сокращении исчезают вовсе. Для объяснения механизма сокращения миофибриллы около пятидесяти лет назад Хью Хаксли предложил модель скользящих нитей, которая затем нашла подтверждение в экспериментах и стала общепринятой.
Механизм сокращения волокна
Чередование светлых и тёмных полос в миофибрильной нити определяется упорядоченным расположением по длине миофибриллы толстых нитей белка миозина и тонких нитей белка актина; толстые нити содержатся только в тёмных участках (А-диск) (рис. 3), светлые же участки (I-диск) не содержат толстых нитей. В середине I-диска находится Z-линия, к ней крепятся тонкие нити актина. Участок миофибриллы, состоящий из А-диска (тёмной полосы) и двух половинок I-дисков (светлых полос), называют саркомером. Сокращение саркомера происходит путём втягивания тонких нитей актина между толстыми нитями миозина. Скольжение нитей актина вдоль нитей миозина происходит благодаря наличию у нитей миозина боковых ответвлений, называемых мостиками. Головка миозинового мостика сцепляется с актином и изменяет угол наклона к оси нити, тем самым как бы продвигая нити миозина и актина друг относительно друга, затем головка отцепляется, сцепляется вновь и вновь совершает движение. Перемещение миозиновых мостиков вдоль нитей актина можно сравнить с гребками вёсел на галерах. Как перемещение галеры в воде происходит благодаря движению весел, так и скольжение нитей миозина происходит благодаря гребковым движениям их мостиков; существенное отличие состоит лишь в том, что движение мостиков асинхронно.
Рис. 3.
Тонкая нить представляет из себя две спирально скрученные цепочки белка актина. В канавках его спиральной цепочки залегает двойная цепочка другого белка - тропомиозина. В расслабленном состоянии мостики миозина не имеют возможности связаться с актином, так как места его сцепления блокированы тропомиозином. При поступлении же по аксону двигательного мотонейрона нервного импульса клеточная мембрана меняет полярность заряда, и из специальных терминальных цистерн, расположенных вокруг каждой миофибриллы вдоль всей её длины, в саркоплазму выбрасываются ионы кальция (Са++) (рис. 4).
Рис. 4.
Под воздействием Са++ нить тропомиозина входит глубже в канавку актина и освобождает места для сцепления миозина с актином, и мостики начинают цикл гребков. Сразу же после высвобождения Са++ из терминальных цистерн он начинает закачиваться обратно. Соответственно, концентрация Са++ в саркоплазме очень быстро падает, тропомиозин выдвигается обратно из канавки и блокирует места сцепления миозиновых мостиков. В результате мышечное волокно расслабляется. Новый столь же короткий нервный импульс опять выбрасывает Са++ в саркоплазму и всё повторяется. При достаточной частоте импульсации (не менее 20 Гц) отдельные мгновенные сокращения почти полностью сливаются воедино, то есть достигается состояние устойчивого сокращения, называемое тетаническим сокращением или состоянием гладкого тетануса.
Энергетика мышцы
Понятно, что для движения мостика требуется энергия. Как я уже упоминал ранее, универсальным источником энергии в живом организме является молекула АТФ. Под действием фермента АТФазы АТФ гидролизуется, отсоединяя фосфатную группу в виде ортофосфорной кислоты (Н3РО4), и превращается в АДФ. При этом высвобождается энергия.
АТФ + H2O = АДФ+ H3PO4 + энергия
Головка миозинового мостика при контакте с актином обладает АТФазной активностью и, соответственно, возможностью расщеплять АТФ и получать энергию, необходимую для движения вдоль нити актина. Запас молекул АТФ в мышце ограничен, поэтому расходы энергии при работе мышцы требует постоянного его восполнения. Мышца имеет четыре источника воспроизводства энергии: расщепление креатинфосфата, миокиназная реакция, гликолиз и окисление органических веществ в митохондриях.
Креатинфосфат обладает способностью отсоединять от себя фосфатную группу и превращаться в креатин, одновременно присоединяя фосфатную группу к АДФ. Которая, тем самым, превращается в АТФ.
креатинфосфат + АДФ = креатин + АТФ
Эта реакция получила название реакции Ломана. Запасы креатинфосфата в волокне невелики, поэтому он используется в качестве источника энергии только на начальном этапе работы мышцы, до момента активизации других, более мощных источников: гликолиза и кислородного окисления. По окончании работы мышцы реакция Ломана идёт в обратном направлении, и запасы креатинфосфата в течение нескольких минут восстанавливаются.
В условиях дефицита энергии при значительном повышении концентрации АДФ активируется миокиназная реакция в ходе которой фосфатная группа переносится с одной молекулы АДФ на другую с образованием АТФ и АМФ (аденезинмонофосфат)
АДФ + АДФ -> АТФ + АМФ
Миокиназная реакция не играет существенной роли в общей энергопродукции мышцы, однако может быть источником энергии в условиях когда восполнение энергии за счет других источников невозможно. Данная реакция как и креатинфосфатная легко обратима.
Гликолиз - это процесс разложения одной молекулы глюкозы (C6H12O6) на две молекулы молочной кислоты (C3H6O3) с выделением энергии, достаточной для "зарядки" двух молекул АТФ. Гликолиз протекает в саркоплазме под воздействием 10 специальных ферментов.
C6H12O6 + 2H3PO4 + 2АДФ = 2C3H6O3 + 2АТФ + 2H2O.
Гликолиз идёт без потребления кислорода (такие процессы называются анаэробными) и способен быстро восстанавливать запасы АТФ в мышце. Окисление протекает в митохондриях под воздействием специальных ферментов и требует затрат кислорода, а соответственно, и времени на его доставку. Такие процессы называются аэробными. Окисление происходит в несколько этапов: сначала идёт гликолиз (см. выше), но образовавшиеся в ходе промежуточного этапа этой реакции две молекулы пирувата не преобразуются в молекулы молочной кислоты, а проникают в митохондрии, где окисляются в цикле Кребса до углекислого газа СО2 и воды Н2О и дают энергию для производства ещё 36 молекул АТФ. Суммарное уравнение реакции окисления глюкозы выглядит так:
C6H12O6 + 6O2 + 38АДФ + 38H3PO4 = 6CO2 + 44H(2)О + 38АТФ
Таким образом, разложение глюкозы по аэробному пути даёт энергию для восстановления 38 молекул АТФ. То есть окисление в 19 раз эффективнее гликолиза.
Типы мышечных волокон
В мышечных волокнах восполнение запасов энергии идет всеми способами одновременно. Но на начальном этапе работы мышцы первостепенную роль играет креатинфосфат. Креатинкиназная реакция протекает почти мгновенно, скорость воспроизводства энергии за счет креатинфосфата очень высока, поэтому мощные взрывные движения реализуются в основном за счет этого источника энергии. Запасы креатинфосфата в волокне не велики, его хватает на несколько секунд сокращения, поэтому при более длительной работе на первый план выходят два других более емких источника энергии – гликолиз и окисление. Оба этих процесса протекают в той или иной мере во всех волокнах, но определенный тип волокон, как правило, специализируются на каком-то одном источнике, так волокна, в которых доминирует гликолиз, принято называть гликолитичискими, а волокна, в которых доминирует окисление, соответственно, окислительными. Но такое четкое разделение наблюдается не во всех волокнах, в ряде волокон оба процесса активны в равной мере, такие волокна называются окислительно-гликолитическими. Разделение по способу получения энергии не случайно, дело в том, что у разных источников энергии разная скорость ее воспроизводства и разная емкость. Так окисление требует времени на доставку кислорода из крови в волокно, а затем в митохондрии, где и происходит ресинтез АТФ, далее АТФ необходимо еще доставить к работающим миозиновым мостикам. Гликолиз же протекает непосредственно в саркоплазме и восстанавливает запасы АТФ значительно быстрее, чем окисление. Поэтому скорость расхода энергии в окислительных волокнах должна быть меньше чем в гликолитических. Скорость расхода энергии, а соответственно сила и скорость сокращения волокна определяются типом его миозина. Изоформа миозина, обеспечивающая высокую скорость сокращения мышцы, - быстрый миозин - характеризуется высокой активностью АТФазы, а соответственно, и скоростью расхода АТФ. Изоформа миозина с меньшей скорость сокращения - медленный миозин - характеризуется меньшей активностью АТФазы. Волокна с высокой активностью АТФазы и скоростью расхода АТФ принято называть быстрыми волокнами; волокна, характеризующиеся низкой активностью АТФазы и меньшей скоростью расхода АТФ, - медленными волокнами. Описанная выше взаимосвязь между скоростью сокращения волокон и их энергетическими запросами приводит к тому, что быстрые волокна по способу получения энергии являются гликолитическими, а медленные – окислительными. Волокна промежуточного типа - окислительно-гликолитические обычно относят к быстрому типу, так как за при необходимости они могут развивать значительное усилие и развивать высокую скорость сокращения, используя гликолиз в качестве основного источника энергии, в то же время при низкой интенсивности сокращения окислительные волокна для воспроизводства энергии эффективно используют окисление.
Хотя окисление воспроизводит энергию более медленно, чем гликолиз, зато оно более эффективно в использовании органического топлива, - распад одной молекулы глюкозы по гликолитичекому пути дает энергию для зарядки только двух молекул АТФ, в то время как окисление глюкозы заряжает энергией 38 молекул АТФ. Кроме того, молочная кислота, возникающая при гликолизе, и накапливающаяся в мышечном волокне вносит существенный вклад в развитие мышечного утомления. По ряду выше указанных причин медленные волокна способны на более длительную работу, чем быстрые. Так быстрые волокна утомляются при работе от десятков секунд до нескольких минут, в то время как медленные волокна способны работать часами.
Для доставки кислорода от капиляров крови в глубь мышечного волокна используется пигментный белок миоглобин, имеющий красный цвет, окислительные волокна содержат этого белка гораздо больше, чем гликолитические, которым кислород нужен в меньшей степени, поэтому под микроскопом окислительные волокна имеют красный цвет, в то время как гликолитические волокна гораздо бледнее. Отсюда за данными типами волокон закрепилось еще одно название - красные и белые.
Тип мышечного волокна зависит от иннервирующего его мотонейрона. Все волокна одного мотонейрона принадлежат к одному типу. Интересный факт: при подключении к быстрому волокну аксона медленного мотонейрона это быстрое волокно перерождается, то есть меняет свой тип - и наоборот. До недавнего времени существовало две точки зрения на зависимость типа волокна от типа мотонейрона. Одни исследователи полагали, что свойства волокна определяются частотой импульсации мотонейрона; другие, что эффект влияния на тип волокна определяется гормоноподобными веществами, поступающими из нерва (эти вещества до настоящего времени так и не выделены). Исследования последних лет показывают, что обе данные точки зрения имеют право на существование, то есть воздействие мотонейрона на волокно осуществляется обоими способами.
Регуляция силы и скорости мышечного сокращения
Как известно, человек обладает способностью произвольно регулировать силу и скорость мышечного сокращения. Реализуется эта способность несколькими способами. Об одном из них я уже писал - это управление частотой нервной импульсации. Подавая волокну одиночные команды на сокращение, можно добиться лёгкого его напряжения. Так, например, поддерживающие позу мышцы слегка напряжены даже тогда, когда человек отдыхает. Повышая частоту импульсов, можно увеличивать силу сокращения до максимально возможной для данного волокна в данных условиях работы - которая достигается при слиянии отдельных коротких импульсов в сплошной гладкий тетанус. Сила, развиваемая волокном в состоянии тетануса, не всегда одинакова и зависит от характера и скорости движения. При статическом напряжении (когда длина волокна остаётся постоянной) сила, развиваемая волокном, бывает больше, чем при сокращении волокна. И чем быстрее сокращается волокно, тем меньшую силу оно способно развить. Максимальную же силу волокно развивает в условиях негативного движения, то есть при удлинении волокна. При отсутствии внешней нагрузки волокно сокращается с максимальной скоростью. При увеличении нагрузки скорость сокращения волокна уменьшается и по достижении определённого уровня нагрузки падает до нуля; при дальнейшем увеличении нагрузки волокно уже удлиняется. Причину в различии силы волокна при различных направлениях движения легко понять, рассмотрев уже приведённый ранее пример с гребцами и вёслами. Дело в том, что после завершения "гребка" миозиновый мостик некоторое время ещё находится в состоянии сцепления с нитью актина (представьте, что весло после гребка тоже не сразу извлекается из воды, а находится погруженным ещё некоторое время). В случае, когда гребцы плывут вперёд (позитивное движение), вёсла, остающиеся погружёнными в воду ещё и после завершения гребка, тормозят движение и мешают плыть. В то же время, если лодка буксируется назад, а гребцы сопротивляются этому движению, то погружённые весла опять-таки мешают движению, и буксиру приходится прилагать дополнительные усилия. То есть при сокращении миофибриллы сцепленные мостики мешают этому сокращению и тем самым уменьшают силу волокна; при
негативном же движении (при удлинении мышцы) не успевшие отцепиться мостики также мешают движению - но в этом случае они как бы поддерживают опускающийся вес, что и позволяет волокну развивать значительно большую силу. Легче всего понять различия между статическим напряжением, позитивным и негативным движением можно, взглянув на
Рис. 5.
Рис. 5.
Итак, здесь были рассказано об основных факторах, влияющих на силу и скорость сокращения отдельного волокна. Сила же сокращения целой мышцы зависит от количества волокон, вовлечённых на данный момент времени в работу.
Вовлечение волокон в работу
При поступлении от ЦНС (центральной нервной системы) к мотонейронам (расположенным в спинном мозге) возбуждающего сигнала (запускающего импульса), мембрана мотонейрона поляризуется, и он генерирует серию коротких импульсов, направляемых по аксону к мышечным волокнам. Чем сильнее воздействие на мотонейрон (чем сильнее поляризация мембраны), тем выше частота генерируемого им импульса - от небольшой стартовой (4-5 Гц), до максимально возможной для данного мотонейрона частоты (50 Гц и более). Быстрые мотонейроны способны генерировать гораздо более высокочастотный импульс, чем медленные, поэтому сила сокращения быстрых волокон гораздо больше подвержена частотной регуляции, чем сила медленных.
В то же время имеется и обратная связь мотонейронов с мышцей, от которой поступают тормозящие сигналы, уменьшающие поляризацию мембраны мотонейрона и снижающие частоту его импульсов. Каждый мотонейрон имеет свой порог возбудимости. Если разность между возбуждающими и тормозящими сигналами превышает этот порог, и на мембране достигается необходимый уровень поляризации, то мотонейрон вовлекается в работу. Медленные мотонейроны имеют, как правило, низкий порог возбудимости, а быстрые - высокий. Мотонейроны же целой мышцы имеют широкий спектр значений этого параметра. Таким образом, при повышении силы сигнала ЦНС активируется всё большее число мотонейронов, а мотонейроны с низким порогом возбудимости увеличивают частоту генерируемого импульса.
Когда требуется лёгкое усилие (например, при ходьбе или беге трусцой), то активируется необходимое число медленных мотонейронов и соответствующее количество медленных волокон. Ввиду высокой выносливости этих волокон такая работа может поддерживаться очень долго. По мере же увеличения нагрузки ЦНС приходится посылать всё более и более сильные сигналы, и в работу вовлекается всё большее и большее число мотонейронов (а следовательно, и мышечных волокон). Одновременно те волокна, что уже работали, увеличивают силу сокращения по причине увеличения частоты импульсации, поступающей от мотонейронов. По мере увеличения нагрузки в работу включаются окислительно – гликолитические волокна, но по достижении определённого уровня нагрузки 20-25% от максимума (например, во время подъёма в гору или финального спурта) силы окислительных волокон становится недостаточно. И тогда посылаемый ЦНС сигнал ещё больше усиливается и включает в работу быстрые - гликолитические - волокна. Быстрые волокна значительно повышают силу сокращения мышцы, но зато, обратным образом, быстро утомляются, и потому в работу начинает вовлекаться всё большее и большее их количество. И если уровень внешней нагрузки не уменьшается, то работу в скором времени приходится останавливать из-за усталости.
Скорость движения мышцы зависит от соотношения внешней нагрузки и количества вовлечённых в движение волокон. Мобилизация относительно небольшого количества волокон сперва приводит к медленному движению - стоит только совместной силе сокращающихся волокон превысить уровень сопротивления нагрузки. Мобилизация большого количества волокон при той же внешней нагрузке приведёт к увеличению скорости сокращения, а увеличение внешней нагрузки или падение силы волокон в результате усталости (при неизменном количестве мобилизованных волокон) приведут к
падению скорости сокращения. При предельных нагрузках - например, при подъёме максимального веса или подъёме относительно небольшого веса, но с максимальной скоростью - сокращается сразу максимально возможное для данного индивида число волокон.
По вопросу вовлечения волокон в работу при предельных нагрузках в литературе приводятся противоречивые сведения. Так, Х. Тюннеманн, Ю. Хартманн утверждают, что даже у тренированных спортсменов при предельных нагрузках активно не более 85% от общего количества двигательных единиц в мышце. С другой стороны, Гурфинкель и Левин приводят данные, что большая часть двигательных единиц рекрутируется уже при нагрузках до 50% от максимума, и в дальнейшем, при повышении силы, к работе подключается лишь небольшая часть (около 10%) самых крупных двигательных единиц. Так что рост силы от 75% до 100% происходит уже не за счёт вовлечения новых двигательных единиц, а за счёт повышения частоты импульса, генерируемого мотонейронами.
Независимо от того, чья точка зрения является правильной, важно одно: сила мышцы зависит от силы импульса ЦНС, а то, чем на самом деле обусловлен рост силы при нагрузках свыше 75% от максимальной (только ли повышением частоты, генерируемой мотонейронами, или же ещё и вовлечением в работу новых мотонейронов) - не принципиально. Важно также и то, что в мышцу встроен ограничительный механизм контроля за развиваемым напряжением. Этот контроль осуществляется через сухожильные органы Гольджи. Сухожильные рецепторы регистрируют напряжение и при превышении критического значения оказывают тормозящее воздействие на мотонейроны. Считается, что именно отключение контроля за напряжением и является разгадкой проявления той "сверхсилы" человека, которая регистрируется в экстремальных ситуациях.
Ни для кого из любителей "железной игры", наверное, не секрет, что теория тренировочного процесса находится сегодня в довольно-таки неприглядном состоянии. Все спортивные журналы полны статей с многочисленными супермодными рекомендациями в отношении тренинга, - но рекомендации эти, увы, крайне противоречивы. "Движение с отягощением должно быть мощным и взрывным", - безапелляционно утверждают одни авторы. "К успеху приводит только медленное подконтрольное движение", - не менее решительно заявляют другие. "Хочешь нарастить массу - работай с большими весами", - дают уверенные указания третьи специалисты. "Вес снаряда не имеет значения. Главное - это техника и ощущение работы мышцы", - противоречат им их оппоненты. Тренироваться шесть дней в неделю утром и вечером советует Арнольд Шварценеггер. Майк Ментцер же запрещает своим ученикам появляться в зале чаще двух раз в неделю. Профессионалы бодибилдинга расписывают для одного только бицепса комплексы из шести упражнений. В свою очередь, МакРоберт призывает вообще не тренировать руки изолированными упражнениями. Пауэрлифтёры во время своих циклов почти никогда не работают до отказа, Ментцер же уверяет, что работа не до отказа - это зря потраченное время. А профи из команды Джо Вейдера вообще советуют идти гораздо дальше отказа с помощью форсированных повторений и так называемого "стриптиза".
Это перечисление можно было бы ещё продолжать и продолжать, но здесь обращает на себя внимание не само обилие взаимоисключающих принципов тренинга, а тот странный факт, что буквально у каждого из этих принципов находятся свои сторонники, сумевшие получить от его использования результат. Данный факт способствовал распространению мнения, что цельной, научной теории тренинга не может быть в принципе. Я же утверждаю, что такая теория есть. И терпеливый читатель вскоре сможет сам в этом убедиться.
Слабым местом любой нынешней методики тренинга является отсутствие у её авторов чёткого представления о причинах роста мышц. Подавляющее большинство специалистов даже не задумывается над этим вопросом, остальные ограничиваются одной лишь умозрительной идеей о тренировочном стрессе. Полагая, что такое легкомыслие является бедой только популярной спортивной литературы, я стал искать ответ на вопрос о причинах роста мышц в серьёзных научных трудах из области физиологии мышечной деятельности. Однако меня постигло разочарование: точными сведениями о том, что именно происходит в мышце во время работы с предельными нагрузками, современная наука, увы, не располагает - или, во всяком случае, не спешит поделиться этими сведениями с широким кругом читателей. Связано это, на мой взгляд, в первую очередь с тем, что основные исследования физиологов всегда были направлены на обеспечение потребностей, так сказать, "классического" спорта, основой которого является тренировка выносливости (работоспособности). Максимум, что мне удалось обнаружить - это исследование структурных изменений в мышцах крыс после получасового интенсивного плавания или бега в колесе. Понятно, что по таким данным тяжело судить о реакции мышц атлета на то напряжение, поддерживать которое мышцы способны всего лишь несколько секунд.
Потеряв надежду найти готовые ответы, я решил самостоятельно, путём анализа всех известных мне сведений, смоделировать те процессы, протекающие в мышцах при нагрузках, близких к предельным. Разработанная мною в конце концов модель воздействия тренировки на мышечный аппарат оказалась способной описать практически все известные эмпирические факты и позволила впервые найти ответы на ряд вопросов, не получивших до настоящего момента времени сколько-нибудь приемлемого объяснения со стороны спортивных физиологов. Например, мне удалось в общих чертах на молекулярном уровне смоделировать механизм возникновения микротравм мышечного волокна (источников посттренировочной боли и общего стрессового воздействия на организм), указать точные условия их возникновения, а также найти причины адаптации мышц к нагрузке и объяснить феномен снижения посттренировочной боли при регулярных тренировках. Ознакомиться с данной информацией читатель сможет во второй части статьи, в которой, собственно, и изложена суть моей теории. На основе этой теории в третьей части статьи я постарался объяснить, почему работает "Супертренинг" Ментцера, тренировки в котором ограничиваются всего лишь одним подходом в упражнении, и для чего предназначены и как работают интервальные (многоподходные) тренировки, а также в чём секрет лифтёрского или штангистского силового цикла, и вообще, чем определяется воздействие большинства иных тренировочных методик и приёмов. Для неподготовленного читателя материал второй части статьи окажется, скорее всего, слишком сложным для понимания, поэтому я рекомендую внимательно изучить сначала первую часть статьи, в которой в более-менее доступной форме изложены основные сведения о строении и принципах функционирования мышц.
Должен заметить, что сведения, приведённые в популярной литературе и даже в большинстве учебных пособий по физиологии мышечной деятельности для спортивных ВУЗов, с которыми мне удалось ознакомиться, являются неполными. Процессы синтеза белка клеткой в данной литературе, как правило, даже не рассматриваются. Судя по всему, именно по этой причине очень многие люди, считающие себя специалистами в области так называемой "химии", на самом деле не имеют правильного представления об анаболическом или, другими словами, восстановительном механизме. Эти "специалисты", любят рассуждать о рецепторах стероидных гормонов, об их "забивке", о "повышении чувствительности" оных рецепторов, об образовании новых рецепторов и т.д., даже не задумываясь о том, что эффект стероидных гормонов реализуется через воздействие на генетический аппарат, заключённый в ядре клетки. Тем самым именно ядро и является конечным рецептором тестостерона, кортизола и ряда других гормонов. Не задумываются они и о том, что важнейшее влияние на объем мышечной ткани оказывает именно количество клеточных ядер в мышце. Конечно, ядра мышечных клеток, равно как и сама мышечная клетка, не способны к делению и размножению, но спортивные физиологи как будто намеренно игнорируют информацию о существовании в мышечных волокнах так называемых "клеток-сателлит" (несформированных мышечных клеток), сохраняющих способность к делению на протяжении всей жизни человека - благодаря чему и обеспечивается увеличение количества мышечных ядер и регенерация мышечных волокон при повреждениях мышечной ткани. Как этот факт может повлиять на рост объёма и силы мышц в результате тренировки, читатель также сможет узнать из второй части моей работы. Итак, повторяю, мне удалось создать более-менее цельную теорию тренинга, на физиологическом уровне объясняющую (конечно, в общих чертах) воздействие тренировки на мышечный аппарат человека и позволяющую найти ответы на большинство вопросов, связанных с улучшением характеристик мышц.
Предвижу сомнения скептиков: как это человек без специального образования посмел залезть в самые дебри новой для себя науки, да ещё набрался наглости выносить на суд публики свои теории? Но что же ещё остаётся делать нам, любителям "железной игры", если ее профессионалы не спешат предложить решение волнующих нас проблем? Ну конечно остаётся только полагаться на собственные силы: в конце концов, как писали классики, "спасение утопающих - дело рук самих утопающих".
Часть I.
Что нужно знать о строении и принципе работы мышц.
Различают три типа мышечной ткани: скелетную, гладкую и сердечную. Функция сердечной ткани понятна из названия, и её роль, я думаю, объяснять не надо. О существовании гладких мышц мы зачастую даже не догадываемся, так как это мышцы внутренних органов. И мы лишены возможности напрямую управлять ими (равно как, впрочем, и сердечной мышцей). Между тем, именно гладкие мышцы сужают просвет сосудов, производят сокращение кишечника, способствуя перемещению пищи, и выполняют ещё множество других жизненно важных функций. В свою очередь, задача скелетных мышц - перемещение частей скелета друг относительно друга (отсюда и название). Именно эти самые мышцы мы с таким упорством пытаемся нарастить на своём теле, и именно их строение и свойства я буду рассматривать в дальнейшем.
Заглянем в клетку
Как известно, все ткани организма имеют клеточную структуру. Не представляют исключения в этом плане и мышцы. Поэтому мне придётся провести краткий экскурс в цитологию - науку о клетке, и напомнить читателям о роли и свойствах основных структур клетки. В грубом приближении клетка состоит из двух важнейших, взаимосвязанных структур - цитоплазмы и ядра.
Ядро содержит в себе молекулу ДНК, в которой заключена вся наследственная информация. ДНК - это полимер, закрученный двойной спиралью. Каждая одинарная спираль ДНК состоит из огромного количества четырёх видов мономеров, называемых нуклеотидами. Последовательность нуклеотидов в цепочке кодирует все белки организма. Ядро, помимо хранения всей наследственной информации, ответственно также и за размножение клетки - деление. Деление клетки начинается с разрывания двойной молекулы ДНК на две отдельные цепочки нуклеотидов, каждая из которых способна достроить себе пару из набора тех нуклеотидов, которые находятся в свободном состоянии внутри клетки, чтобы тем самым превратиться вновь в двойную молекулу ДНК. Таким образом, количество ДНК в ядре удваивается, вслед за этим на две части делится ядро, а за ним и вся остальная клетка.
Цитоплазма - это всё то, что в клетке окружает ядро. Цитоплазма состоит из цитозоли (клеточной жидкости), в которую включены различные органеллы (части клетки), такие, например, как митохондрии, лизосомы, рибосомы и пр.
Митохондрии являются энергетическими станциями клетки. В них с помощью различных ферментов происходит окисление аминокислот, углеводов и жирных кислот. Энергия, выделяющаяся при этом окислении, идёт на присоединение третьей фосфатной группы к молекуле аденезиндифосфата (АДФ) с образованием аденезинтрифосфата (АТФ) - универсального источника энергии для всех процессов, протекающих в клетке. Отсоединяя третью фосфатную группу и вновь превращаясь в АДФ, АТФ выделяет запасённую ранее энергию.
Ферменты или энзимы - это вещества белковой природы, в сотни и тысячи раз увеличивающие скорость протекание химических реакций. Практически все жизненно важные химические процессы в организме происходят только в присутствии специфических ферментов.
Лизосомы - округлые пузырьки, содержащие около 50 ферментов. Лизосомные ферменты расщепляют поглощённый клеткой материал и собственные внутренние структуры клетки (автолизис). Лизосомы, сливаясь в фагосомы, способны переваривать целые органеллы, подлежащие дезинтеграции.
Рибосомы - это такие органеллы, внутри которых происходит сборка белковой молекулы.
Клеточная мембрана представляет собой просто оболочку клетки. Мембрана обладает избирательной проницаемостью, то есть способностью пропускать одни вещества и задерживать другие. Задача мембраны - сохранять постоянство внутренней среды клетки.
Строение мышцы
Структурно-функциональной единицей скелетной мышцы является симпласт или мышечное волокно - огромная клетка, имеющая форму протяжённого цилиндра с заострёнными концами (в дальнейшем под наименованиями "симпласт", "мышечное волокно" и "мышечная клетка" следует понимать один и тот же объект). Длина мышечной клетки чаще всего соответствует длине целой мышцы и достигает 14 см, а диаметр равен нескольким сотым долям миллиметра. Мышечное волокно, как и любая клетка, имеет оболочку - сарколему. Снаружи отдельные мышечные волокна окружены рыхлой соединительной тканью, которая содержит кровеносные и лимфатические сосуды, а также нервные волокна. Группы мышечных волокон образуют пучки. Пучки, в свою очередь, объединяются в целую мышцу, "упакованную" в плотный чехол соединительной ткани, который переходит на концах мышцы в сухожилия, крепящиеся к костям. Усилие, вызываемое сокращением мышечного волокна, передаётся через сухожилия костям скелета и приводит их в движение.
Рис.1
Управление сократительной активностью мышцы осуществляется с помощью большого числа мотонейронов (рис. 2) - нервных клеток, тела которых лежат в спинном мозге, а длинные ответвления, аксоны, в составе двигательного нерва подходят к мышце. Войдя в мышцу, аксон разветвляется на множество веточек, каждая из которых подведена к отдельному волокну. Таким образом, один мотонейрон иннервирует целую группу волокон (такназываемую "нейромоторную единицу"), которая работает как единое целое.
Рис.2.
Мышца состоит из множества нейромоторных единиц и способна работать не только всей своей массой, но также и отдельными пучками, что позволяет регулировать силу и скорость сокращения. Для понимания механизма сокращения мышцы необходимо рассмотреть внутреннее строение мышечного волокна. От большинства других клеток оно отличается, прежде всего, своей многоядерностью. Связано это с особенностями формирования волокна при развитии плода. Мышечное волокно образуется на этапе эмбрионального развития организма из клеток-предшественниц - миобластов. Миобласты (неоформленные мышечные клетки) интенсивно делятся, сливаются друг с другом и образуют мышечную трубочку с центральным расположением ядер. Затем в этой трубочке начинается синтез миофибрилл - сократительных элементов мышечного волокна (см. ниже). Завершается формирование мышечного волокна миграцией ядер на периферию. Ядра мышечного волокна к этому времени уже теряют способность к делению, и за ними остаётся только функция хранения информации для синтеза белка. Но не все миобласты идут по пути слияния в мышечные трубочки, часть из них обособляется в виде клеток-сателлитов, располагающихся на поверхности мышечного волокна, а именно в сарколеме, между плазмолемой и базальной мембраной - составными частями сарколемы. Клетки-сателлиты, в отличие от мышечных волокон, не утрачивают способности к делению на протяжении всей своей жизни, что обеспечивает увеличение общей массы волокон и их обновление. Восстановление мышечных волокон при повреждении мышцы возможно только благодаря клеткам-сателлитам. При гибели волокна скрывающиеся в его оболочке клетки-сателлиты активизируются, делятся и преобразуются в миобласты. Миобласты сливаются друг с другом и образуют новые мышечные трубочки, в которых затем начинается сборка миофибрилл. То есть при регенерации полностью повторяются события эмбрионального (внутриутробного) развития мышцы (Р.П. Женевская Э.Г., Улугбеков и Ю.А. Челышев)
Помимо многоядерности, отличительной чертой мышечного волокна является наличие в цитоплазме (у мышечного волокна её принято называть саркоплазмой) тонких волоконец - миофибрилл (рис. 1), расположенных вдоль клетки и уложенных параллельно. Число миофибрилл в волокне достигает двух тысяч. Миофибриллы являются сократительными элементами мышечной клетки и обладают способностью уменьшать свою длину при поступлении нервного импульса, стягивая тем самым мышечное волокно. Под микроскопом видно, что миофибрилла имеет поперечную исчерченность - чередующиеся тёмные и светлые полосы. При сокращении миофибриллы светлые участки уменьшают свою длину, а при полном сокращении исчезают вовсе. Для объяснения механизма сокращения миофибриллы около пятидесяти лет назад Хью Хаксли предложил модель скользящих нитей, которая затем нашла подтверждение в экспериментах и стала общепринятой.
Механизм сокращения волокна
Чередование светлых и тёмных полос в миофибрильной нити определяется упорядоченным расположением по длине миофибриллы толстых нитей белка миозина и тонких нитей белка актина; толстые нити содержатся только в тёмных участках (А-диск) (рис. 3), светлые же участки (I-диск) не содержат толстых нитей. В середине I-диска находится Z-линия, к ней крепятся тонкие нити актина. Участок миофибриллы, состоящий из А-диска (тёмной полосы) и двух половинок I-дисков (светлых полос), называют саркомером. Сокращение саркомера происходит путём втягивания тонких нитей актина между толстыми нитями миозина. Скольжение нитей актина вдоль нитей миозина происходит благодаря наличию у нитей миозина боковых ответвлений, называемых мостиками. Головка миозинового мостика сцепляется с актином и изменяет угол наклона к оси нити, тем самым как бы продвигая нити миозина и актина друг относительно друга, затем головка отцепляется, сцепляется вновь и вновь совершает движение. Перемещение миозиновых мостиков вдоль нитей актина можно сравнить с гребками вёсел на галерах. Как перемещение галеры в воде происходит благодаря движению весел, так и скольжение нитей миозина происходит благодаря гребковым движениям их мостиков; существенное отличие состоит лишь в том, что движение мостиков асинхронно.
Рис. 3.
Тонкая нить представляет из себя две спирально скрученные цепочки белка актина. В канавках его спиральной цепочки залегает двойная цепочка другого белка - тропомиозина. В расслабленном состоянии мостики миозина не имеют возможности связаться с актином, так как места его сцепления блокированы тропомиозином. При поступлении же по аксону двигательного мотонейрона нервного импульса клеточная мембрана меняет полярность заряда, и из специальных терминальных цистерн, расположенных вокруг каждой миофибриллы вдоль всей её длины, в саркоплазму выбрасываются ионы кальция (Са++) (рис. 4).
Рис. 4.
Под воздействием Са++ нить тропомиозина входит глубже в канавку актина и освобождает места для сцепления миозина с актином, и мостики начинают цикл гребков. Сразу же после высвобождения Са++ из терминальных цистерн он начинает закачиваться обратно. Соответственно, концентрация Са++ в саркоплазме очень быстро падает, тропомиозин выдвигается обратно из канавки и блокирует места сцепления миозиновых мостиков. В результате мышечное волокно расслабляется. Новый столь же короткий нервный импульс опять выбрасывает Са++ в саркоплазму и всё повторяется. При достаточной частоте импульсации (не менее 20 Гц) отдельные мгновенные сокращения почти полностью сливаются воедино, то есть достигается состояние устойчивого сокращения, называемое тетаническим сокращением или состоянием гладкого тетануса.
Энергетика мышцы
Понятно, что для движения мостика требуется энергия. Как я уже упоминал ранее, универсальным источником энергии в живом организме является молекула АТФ. Под действием фермента АТФазы АТФ гидролизуется, отсоединяя фосфатную группу в виде ортофосфорной кислоты (Н3РО4), и превращается в АДФ. При этом высвобождается энергия.
АТФ + H2O = АДФ+ H3PO4 + энергия
Головка миозинового мостика при контакте с актином обладает АТФазной активностью и, соответственно, возможностью расщеплять АТФ и получать энергию, необходимую для движения вдоль нити актина. Запас молекул АТФ в мышце ограничен, поэтому расходы энергии при работе мышцы требует постоянного его восполнения. Мышца имеет четыре источника воспроизводства энергии: расщепление креатинфосфата, миокиназная реакция, гликолиз и окисление органических веществ в митохондриях.
Креатинфосфат обладает способностью отсоединять от себя фосфатную группу и превращаться в креатин, одновременно присоединяя фосфатную группу к АДФ. Которая, тем самым, превращается в АТФ.
креатинфосфат + АДФ = креатин + АТФ
Эта реакция получила название реакции Ломана. Запасы креатинфосфата в волокне невелики, поэтому он используется в качестве источника энергии только на начальном этапе работы мышцы, до момента активизации других, более мощных источников: гликолиза и кислородного окисления. По окончании работы мышцы реакция Ломана идёт в обратном направлении, и запасы креатинфосфата в течение нескольких минут восстанавливаются.
В условиях дефицита энергии при значительном повышении концентрации АДФ активируется миокиназная реакция в ходе которой фосфатная группа переносится с одной молекулы АДФ на другую с образованием АТФ и АМФ (аденезинмонофосфат)
АДФ + АДФ -> АТФ + АМФ
Миокиназная реакция не играет существенной роли в общей энергопродукции мышцы, однако может быть источником энергии в условиях когда восполнение энергии за счет других источников невозможно. Данная реакция как и креатинфосфатная легко обратима.
Гликолиз - это процесс разложения одной молекулы глюкозы (C6H12O6) на две молекулы молочной кислоты (C3H6O3) с выделением энергии, достаточной для "зарядки" двух молекул АТФ. Гликолиз протекает в саркоплазме под воздействием 10 специальных ферментов.
C6H12O6 + 2H3PO4 + 2АДФ = 2C3H6O3 + 2АТФ + 2H2O.
Гликолиз идёт без потребления кислорода (такие процессы называются анаэробными) и способен быстро восстанавливать запасы АТФ в мышце. Окисление протекает в митохондриях под воздействием специальных ферментов и требует затрат кислорода, а соответственно, и времени на его доставку. Такие процессы называются аэробными. Окисление происходит в несколько этапов: сначала идёт гликолиз (см. выше), но образовавшиеся в ходе промежуточного этапа этой реакции две молекулы пирувата не преобразуются в молекулы молочной кислоты, а проникают в митохондрии, где окисляются в цикле Кребса до углекислого газа СО2 и воды Н2О и дают энергию для производства ещё 36 молекул АТФ. Суммарное уравнение реакции окисления глюкозы выглядит так:
C6H12O6 + 6O2 + 38АДФ + 38H3PO4 = 6CO2 + 44H(2)О + 38АТФ
Таким образом, разложение глюкозы по аэробному пути даёт энергию для восстановления 38 молекул АТФ. То есть окисление в 19 раз эффективнее гликолиза.
Типы мышечных волокон
В мышечных волокнах восполнение запасов энергии идет всеми способами одновременно. Но на начальном этапе работы мышцы первостепенную роль играет креатинфосфат. Креатинкиназная реакция протекает почти мгновенно, скорость воспроизводства энергии за счет креатинфосфата очень высока, поэтому мощные взрывные движения реализуются в основном за счет этого источника энергии. Запасы креатинфосфата в волокне не велики, его хватает на несколько секунд сокращения, поэтому при более длительной работе на первый план выходят два других более емких источника энергии – гликолиз и окисление. Оба этих процесса протекают в той или иной мере во всех волокнах, но определенный тип волокон, как правило, специализируются на каком-то одном источнике, так волокна, в которых доминирует гликолиз, принято называть гликолитичискими, а волокна, в которых доминирует окисление, соответственно, окислительными. Но такое четкое разделение наблюдается не во всех волокнах, в ряде волокон оба процесса активны в равной мере, такие волокна называются окислительно-гликолитическими. Разделение по способу получения энергии не случайно, дело в том, что у разных источников энергии разная скорость ее воспроизводства и разная емкость. Так окисление требует времени на доставку кислорода из крови в волокно, а затем в митохондрии, где и происходит ресинтез АТФ, далее АТФ необходимо еще доставить к работающим миозиновым мостикам. Гликолиз же протекает непосредственно в саркоплазме и восстанавливает запасы АТФ значительно быстрее, чем окисление. Поэтому скорость расхода энергии в окислительных волокнах должна быть меньше чем в гликолитических. Скорость расхода энергии, а соответственно сила и скорость сокращения волокна определяются типом его миозина. Изоформа миозина, обеспечивающая высокую скорость сокращения мышцы, - быстрый миозин - характеризуется высокой активностью АТФазы, а соответственно, и скоростью расхода АТФ. Изоформа миозина с меньшей скорость сокращения - медленный миозин - характеризуется меньшей активностью АТФазы. Волокна с высокой активностью АТФазы и скоростью расхода АТФ принято называть быстрыми волокнами; волокна, характеризующиеся низкой активностью АТФазы и меньшей скоростью расхода АТФ, - медленными волокнами. Описанная выше взаимосвязь между скоростью сокращения волокон и их энергетическими запросами приводит к тому, что быстрые волокна по способу получения энергии являются гликолитическими, а медленные – окислительными. Волокна промежуточного типа - окислительно-гликолитические обычно относят к быстрому типу, так как за при необходимости они могут развивать значительное усилие и развивать высокую скорость сокращения, используя гликолиз в качестве основного источника энергии, в то же время при низкой интенсивности сокращения окислительные волокна для воспроизводства энергии эффективно используют окисление.
Хотя окисление воспроизводит энергию более медленно, чем гликолиз, зато оно более эффективно в использовании органического топлива, - распад одной молекулы глюкозы по гликолитичекому пути дает энергию для зарядки только двух молекул АТФ, в то время как окисление глюкозы заряжает энергией 38 молекул АТФ. Кроме того, молочная кислота, возникающая при гликолизе, и накапливающаяся в мышечном волокне вносит существенный вклад в развитие мышечного утомления. По ряду выше указанных причин медленные волокна способны на более длительную работу, чем быстрые. Так быстрые волокна утомляются при работе от десятков секунд до нескольких минут, в то время как медленные волокна способны работать часами.
Для доставки кислорода от капиляров крови в глубь мышечного волокна используется пигментный белок миоглобин, имеющий красный цвет, окислительные волокна содержат этого белка гораздо больше, чем гликолитические, которым кислород нужен в меньшей степени, поэтому под микроскопом окислительные волокна имеют красный цвет, в то время как гликолитические волокна гораздо бледнее. Отсюда за данными типами волокон закрепилось еще одно название - красные и белые.
Тип мышечного волокна зависит от иннервирующего его мотонейрона. Все волокна одного мотонейрона принадлежат к одному типу. Интересный факт: при подключении к быстрому волокну аксона медленного мотонейрона это быстрое волокно перерождается, то есть меняет свой тип - и наоборот. До недавнего времени существовало две точки зрения на зависимость типа волокна от типа мотонейрона. Одни исследователи полагали, что свойства волокна определяются частотой импульсации мотонейрона; другие, что эффект влияния на тип волокна определяется гормоноподобными веществами, поступающими из нерва (эти вещества до настоящего времени так и не выделены). Исследования последних лет показывают, что обе данные точки зрения имеют право на существование, то есть воздействие мотонейрона на волокно осуществляется обоими способами.
Регуляция силы и скорости мышечного сокращения
Как известно, человек обладает способностью произвольно регулировать силу и скорость мышечного сокращения. Реализуется эта способность несколькими способами. Об одном из них я уже писал - это управление частотой нервной импульсации. Подавая волокну одиночные команды на сокращение, можно добиться лёгкого его напряжения. Так, например, поддерживающие позу мышцы слегка напряжены даже тогда, когда человек отдыхает. Повышая частоту импульсов, можно увеличивать силу сокращения до максимально возможной для данного волокна в данных условиях работы - которая достигается при слиянии отдельных коротких импульсов в сплошной гладкий тетанус. Сила, развиваемая волокном в состоянии тетануса, не всегда одинакова и зависит от характера и скорости движения. При статическом напряжении (когда длина волокна остаётся постоянной) сила, развиваемая волокном, бывает больше, чем при сокращении волокна. И чем быстрее сокращается волокно, тем меньшую силу оно способно развить. Максимальную же силу волокно развивает в условиях негативного движения, то есть при удлинении волокна. При отсутствии внешней нагрузки волокно сокращается с максимальной скоростью. При увеличении нагрузки скорость сокращения волокна уменьшается и по достижении определённого уровня нагрузки падает до нуля; при дальнейшем увеличении нагрузки волокно уже удлиняется. Причину в различии силы волокна при различных направлениях движения легко понять, рассмотрев уже приведённый ранее пример с гребцами и вёслами. Дело в том, что после завершения "гребка" миозиновый мостик некоторое время ещё находится в состоянии сцепления с нитью актина (представьте, что весло после гребка тоже не сразу извлекается из воды, а находится погруженным ещё некоторое время). В случае, когда гребцы плывут вперёд (позитивное движение), вёсла, остающиеся погружёнными в воду ещё и после завершения гребка, тормозят движение и мешают плыть. В то же время, если лодка буксируется назад, а гребцы сопротивляются этому движению, то погружённые весла опять-таки мешают движению, и буксиру приходится прилагать дополнительные усилия. То есть при сокращении миофибриллы сцепленные мостики мешают этому сокращению и тем самым уменьшают силу волокна; при
негативном же движении (при удлинении мышцы) не успевшие отцепиться мостики также мешают движению - но в этом случае они как бы поддерживают опускающийся вес, что и позволяет волокну развивать значительно большую силу. Легче всего понять различия между статическим напряжением, позитивным и негативным движением можно, взглянув на
Рис. 5.
Рис. 5.
Итак, здесь были рассказано об основных факторах, влияющих на силу и скорость сокращения отдельного волокна. Сила же сокращения целой мышцы зависит от количества волокон, вовлечённых на данный момент времени в работу.
Вовлечение волокон в работу
При поступлении от ЦНС (центральной нервной системы) к мотонейронам (расположенным в спинном мозге) возбуждающего сигнала (запускающего импульса), мембрана мотонейрона поляризуется, и он генерирует серию коротких импульсов, направляемых по аксону к мышечным волокнам. Чем сильнее воздействие на мотонейрон (чем сильнее поляризация мембраны), тем выше частота генерируемого им импульса - от небольшой стартовой (4-5 Гц), до максимально возможной для данного мотонейрона частоты (50 Гц и более). Быстрые мотонейроны способны генерировать гораздо более высокочастотный импульс, чем медленные, поэтому сила сокращения быстрых волокон гораздо больше подвержена частотной регуляции, чем сила медленных.
В то же время имеется и обратная связь мотонейронов с мышцей, от которой поступают тормозящие сигналы, уменьшающие поляризацию мембраны мотонейрона и снижающие частоту его импульсов. Каждый мотонейрон имеет свой порог возбудимости. Если разность между возбуждающими и тормозящими сигналами превышает этот порог, и на мембране достигается необходимый уровень поляризации, то мотонейрон вовлекается в работу. Медленные мотонейроны имеют, как правило, низкий порог возбудимости, а быстрые - высокий. Мотонейроны же целой мышцы имеют широкий спектр значений этого параметра. Таким образом, при повышении силы сигнала ЦНС активируется всё большее число мотонейронов, а мотонейроны с низким порогом возбудимости увеличивают частоту генерируемого импульса.
Когда требуется лёгкое усилие (например, при ходьбе или беге трусцой), то активируется необходимое число медленных мотонейронов и соответствующее количество медленных волокон. Ввиду высокой выносливости этих волокон такая работа может поддерживаться очень долго. По мере же увеличения нагрузки ЦНС приходится посылать всё более и более сильные сигналы, и в работу вовлекается всё большее и большее число мотонейронов (а следовательно, и мышечных волокон). Одновременно те волокна, что уже работали, увеличивают силу сокращения по причине увеличения частоты импульсации, поступающей от мотонейронов. По мере увеличения нагрузки в работу включаются окислительно – гликолитические волокна, но по достижении определённого уровня нагрузки 20-25% от максимума (например, во время подъёма в гору или финального спурта) силы окислительных волокон становится недостаточно. И тогда посылаемый ЦНС сигнал ещё больше усиливается и включает в работу быстрые - гликолитические - волокна. Быстрые волокна значительно повышают силу сокращения мышцы, но зато, обратным образом, быстро утомляются, и потому в работу начинает вовлекаться всё большее и большее их количество. И если уровень внешней нагрузки не уменьшается, то работу в скором времени приходится останавливать из-за усталости.
Скорость движения мышцы зависит от соотношения внешней нагрузки и количества вовлечённых в движение волокон. Мобилизация относительно небольшого количества волокон сперва приводит к медленному движению - стоит только совместной силе сокращающихся волокон превысить уровень сопротивления нагрузки. Мобилизация большого количества волокон при той же внешней нагрузке приведёт к увеличению скорости сокращения, а увеличение внешней нагрузки или падение силы волокон в результате усталости (при неизменном количестве мобилизованных волокон) приведут к
падению скорости сокращения. При предельных нагрузках - например, при подъёме максимального веса или подъёме относительно небольшого веса, но с максимальной скоростью - сокращается сразу максимально возможное для данного индивида число волокон.
По вопросу вовлечения волокон в работу при предельных нагрузках в литературе приводятся противоречивые сведения. Так, Х. Тюннеманн, Ю. Хартманн утверждают, что даже у тренированных спортсменов при предельных нагрузках активно не более 85% от общего количества двигательных единиц в мышце. С другой стороны, Гурфинкель и Левин приводят данные, что большая часть двигательных единиц рекрутируется уже при нагрузках до 50% от максимума, и в дальнейшем, при повышении силы, к работе подключается лишь небольшая часть (около 10%) самых крупных двигательных единиц. Так что рост силы от 75% до 100% происходит уже не за счёт вовлечения новых двигательных единиц, а за счёт повышения частоты импульса, генерируемого мотонейронами.
Независимо от того, чья точка зрения является правильной, важно одно: сила мышцы зависит от силы импульса ЦНС, а то, чем на самом деле обусловлен рост силы при нагрузках свыше 75% от максимальной (только ли повышением частоты, генерируемой мотонейронами, или же ещё и вовлечением в работу новых мотонейронов) - не принципиально. Важно также и то, что в мышцу встроен ограничительный механизм контроля за развиваемым напряжением. Этот контроль осуществляется через сухожильные органы Гольджи. Сухожильные рецепторы регистрируют напряжение и при превышении критического значения оказывают тормозящее воздействие на мотонейроны. Считается, что именно отключение контроля за напряжением и является разгадкой проявления той "сверхсилы" человека, которая регистрируется в экстремальных ситуациях.
l
lifter
Часть II. Почему растут мышцы
Вступление
Первую часть данной статьи я посвятил краткому изложению основ физиологии мышечной деятельности, и теперь пришла пора ознакомить читателей с основами классической теории тренировки.
Организм - это саморегулируемая система, стремящаяся к поддержанию постоянства внутренней среды. Физическая нагрузка оказывает выраженное воздействие на внутреннюю среду мышц и организма в целом, смещая многие биохимические показатели от уровня, характерного для состояния покоя, к уровню, соответствующему состоянию деятельности. Степень этих изменений зависит от характера и интенсивности физической нагрузки и индивидуальной реакции на неё организма, отражающей уровень тренированности. Сразу после прекращения нагрузки в организме начинаются процессы, которые стремятся восстановить исходное состояние, соответствующее гомеостазу покоя. В ходе этих процессов закрепляются изменения, позволяющие в дальнейшем минимизировать возмущение внутренней среды при аналогичных нагрузках.
Спортивную тренировку следует рассматривать как процесс направленного приспособления организма (адаптации) к воздействию тренировочных нагрузок.
Различают срочную и долговременную адаптацию. Срочная адаптация - это ответ организма на однократное воздействие тренировочной нагрузки, выражающийся в "аварийном" приспособлении к изменившемуся состоянию своей внутренней среды. Ответ этот сводится, преимущественно, к изменениям в энергетическом обмене и к активации высших нервных центров, ответственных за регуляцию энергетического обмена. Что же касается долговременной адаптации, то она формируется постепенно на основе многократной реализации срочной адаптации путём суммирования следов повторяющихся нагрузок.
В протекании процессов адаптации можно различить специфическую компоненту и общую адаптационную реакцию. Процессы специфической адаптации затрагивают внутриклеточный энергетический и пластический обмен и связанные с ним функции вегетативного обслуживания, которые специфически реагируют на данный вид воздействия сообразно его силе.
Общая адаптационная реакция развивается в ответ на самые разные раздражители (независимо от их природы) в том случае, если сила этих раздражителей превышает некий пороговый уровень. Реализуется общая адаптационная реакция благодаря возбуждению симпато-адреалиновой и гипофизарно-адренокортикальной систем. В результате их активации в крови и тканях повышается содержание катехоламинов и глюкокортикоидов, что способствует мобилизации энергетических и пластических резервов организма. Такая неспецифическая реакция на раздражение была названа "синдром стресса", а раздражители, вызывающие эту реакцию, получили название "стресс-факторы".
Общий адаптационный синдром сам по себе не является основой адаптации к тренировочным нагрузкам, он лишь призван на системном уровне обеспечивать протекание специфических адаптационных реакций, которые и формируют приспособление организма к конкретным видам нагрузки.
Несмотря на различную природу процессов специфической адаптации, можно выделить общие закономерности их протекания. Основу специфической адаптации составляют процессы восстановления растраченных во время мышечной работы энергетических ресурсов, разрушенных структур клеток, смещённого водно-электролитического баланса и др. Наглядно проследить закономерности протекания восстановительных процессов можно на примере восстановления энергетических ресурсов организма, поскольку при физических нагрузках наиболее выраженные изменения обнаруживаются именно в сфере энергетического обмена.
Изменения в энергетическом обмене
Мышечная работа в зависимости от её интенсивности и длительности приводит к снижению уровня креатинфосфата в мышцах, а также к истощению запасов внутримышечного гликогена, гликогена печени и резервов жиров. Интенсивно протекающие после прекращения нагрузки процессы восстановления приводят к тому, что в определённый момент отдыха после работы уровень энергетических веществ начинает превышать исходный "дорабочий" уровень. Это явление получило название "суперкомпенсация" или "сверхвосстановление" (рис. 1).
Рис. 1.
Фаза суперкомпенсации длится не вечно, уровень запасов энергетических веществ постепенно возвращается к норме, испытывая некоторые колебания возле состояния равновесия. Чем больше был расход энергии при работе, тем интенсивнее идёт восстановление и тем значительнее оказывается превышение исходного уровня в фазе суперкомпенсации. Однако это правило применимо лишь до какого-то предела. При истощающих нагрузках, приводящих к накоплению слишком большого количества продуктов распада, скорость восстановительных процессов уменьшается, фаза суперкомпенсации откладывается и оказывается выраженной в меньшей степени.
Похожим образом идёт восстановление не только энергетических, но и пластических ресурсов организма, и даже целых тренируемых функций. Напряжение в ходе физической нагрузки систем, ответственных за реализацию той или иной функции, сначала приводит к снижению функциональных возможностей организма, но затем во время отдыха достигается состояние суперкомпенсации тренируемой функции, длящееся определённое время, а ещё через какое-то время, при отсутствии повторных нагрузок, уровень тренируемой функции вновь снижается, - то есть наступает фаза утраченной суперкомпенсации (рис. 1).
Выработка долговременной адаптации становится возможной только в том случае, если тренировки ведутся по определённым правилам, благодаря чему их эффекты суммируются. Проведение повторных тренировок в фазе утраченной суперкомпенсации (слишком редкие тренировки) (рис. 2) не сможет привести к закреплению тренировочного эффекта, поскольку каждая последующая тренировка проводится после возвращения функциональных возможностей организма к исходному уровню.
Рис. 2.
В свою очередь, слишком частые тренировки, прерывающие стадию восстановления до достижения эффекта суперкомпенсации (рис. 3) приводят к отрицательному взаимодействию тренировочных эффектов и к снижению функциональных возможностей организма.
Рис. 3.
И только проведение повторных тренировок в фазе суперкомпенсации (рис. 4) приводит к положительному взаимодействию тренировочных эффектов, закреплению следов срочной адаптации, росту тренируемой функции и формированию долговременной адаптации.
Рис. 4.
Однако приведённые выше правила не следует воспринимать узко, однолинейно. Требование задавать нагрузку только в стадии суперкомпенсации справедливо лишь в долгосрочной перспективе. В рамках же одного тренировочного микроцикла возможны и серии тренировок в стадии недовосстановления (рис. 5), приводящие к более глубокому истощению тренируемой функции - что может быть использовано затем либо для получения более мощного роста функциональных возможностей в стадии суперкомпенсации, либо для вызванного тактической необходимостью переноса во времени эффекта суперкомпенсации.
Рис. 5.
На первый взгляд может показаться, что составление эффективных тренировочных программ является делом несложным: мол, тут достаточно определить уровень нагрузки, необходимый для достижения максимальной суперкомпенсации той или иной функции, а также время наступления фазы суперкомпенсации - и тогда можно будет задавать повторные нагрузки с необходимой частотой, постоянно получая положительную сумму тренировочных эффектов. Однако на практике данный принцип построения тренировки реализовать в полной мере почти никогда не удаётся.
Всё дело в том, что различные параметры и функции, вносящие свой вклад в общую тренированность (необходимую для того или иного вида спорта), имеют не только разное время восстановления и достижения суперкомпенсации, но также и разную длительность фазы суперкомпенсации. Так, фаза суперкомпенсации уровня креатинфосфата в мышце достигается всего через несколько минут отдыха после нагрузки, приводящей к существенному снижению его уровня. Для достижения же выраженной суперкомпенсации запасов гликогена в мышцах требуется не менее 2-3 суток, и к этому моменту уровень креатинфосфата уже вступает в фазу утраченной суперкомпенсации. В свою очередь, для восстановления структур клеток, разрушенных в ходе тренировок, потребуется ещё больший период времени, в течение которого уровень гликогена в мышцах уже может вернуться к исходному уровню. Так что заявления некоторых "гуру" бодибилдинга о том, что время восстановления мышцы после тренировки должно составлять N часов (дней), без указания на то, о восстановлении какой именно ведущей функции идёт речь, являются, мягко выражаясь, довольно сомнительными. Задать такой период отдыха между тренировками, который позволил бы получать усиление всех тренируемых функций одновременно - дело просто невозможное.
Поэтому в классическом подходе к спортивной тренировке годичный (и даже многолетний) период тренировок разбивают на микро- и макроциклы, в ходе которых ставятся задачи по повышению определённых способностей. Чередование тренировочных занятий в ходе микроциклов осуществляется таким образом, чтобы физические нагрузки, направленные на наращивание определённой двигательной способности, задавались через промежутки времени, обеспечивающие суперкомпенсацию ведущей функции, а нагрузки иной направленности, применяемые в этот период, не оказывали отрицательного влияния на восстановление основной функции.
Однако такой метод срабатывает только при тренировке, так сказать, "взаимонезависимых" функций или параметров. Если же какая-то двигательная способность зависит от развития сразу нескольких функций или параметров, испытывающих напряжение в ходе одного тренировочного занятия и имеющих разное время восстановления, то в течение микроцикла приходиться варьировать интенсивность и объём тренировок, накладывая волны восстановления различных параметров друг на друга таким образом, чтобы получить суперкомпенсацию основных тренируемых функций к моменту завершения микроцикла.
На рисунке 6 представлен простейший вариант построения микроцикла для двух тренируемых функций, имеющих разное время восстановления. В течение микроцикла одна функция испытывает последовательное положительное суммирование тренировочных эффектов, в то время как другая функция последовательно вводится в стадию истощения и достигает суперкомпенсации лишь во время отдыха либо снижения нагрузки к концу микроцикла. Реальная картина тренировок, конечно, куда сложнее, поскольку число тренируемых параметров и функций обычно не ограничивается двумя, а доходит до десятка.
Рис. 6.
Так уж сложилось, что классическая теория тренировки основывается на изучение процессов, приводящих к росту работоспособности мышц и организма в самых различных режимах работы. Дело в том, что основой практически всех видов спорта является именно работоспособность, а потому традиционная цель планируемых адаптационных изменений в организме спортсмена - выход на новый уровень работоспособности. Гипертрофия же мышц в классическом спорте никогда не была целью тренинга и потому воспринимается лишь как побочный продукт развития основных двигательных качеств. Более того, гипертрофия мышц иногда может даже мешать достижению стоящих перед спортсменом целей. А вот посетителей тренажерных залов, за редким исключением, интересует не столько повышение двигательных способностей, сколько именно гипертрофия мышц - хотя, безусловно, увеличение выносливости мышц способствует гипертрофии мышечной ткани. За счёт чего?
Во-первых, за счёт того, что процессы, направленные на улучшение доставки кислорода к мышцам, существенно развивают капиллярную сеть. Во-вторых, за счёт того, что тренировка окислительной активности мышц приводит к значительному росту в саркоплазме мышечных волокон количества и объёма митохондрий - энергетических станций клетки. В-третьих, за счёт того, что суммирующиеся процессы суперкомпенсации внутримышечных запасов гликогена приводят к заметному его накоплению, что, в свою очередь, увеличивает объём саркоплазмы мышечного волокна. К гипертрофии мышц приводит накопление и иных веществ, ответственных за энергообеспечение мышечной деятельности - таких, например, как креатинфосфат - что также увеличивает объём саркоплазмы, и даже не столько за счёт роста объёмов самих этих веществ, сколько за счёт сопутствующего увеличения объёма внутриклеточной жидкости. Таким образом, тренировка работоспособности мышц приводит к гипертрофии мышечных волокон, в первую очередь, за счёт увеличения объёма саркоплазмы.
Однако наибольший вклад в рост объёмов и силы сокращения мышечных волокон вносит гипертрофия именно самих миофибрилл, а все остальные компоненты мышечных клеток призваны лишь обеспечивать их, миофибрилл, сократительную активность. Как размер топливных баков самолёта зависит от мощности, от "аппетита" его турбин, так и объём саркоплазмы мышечного волокна зависит от параметров сократительного аппарата клетки (ну и, конечно, от объёма работы, регулярно выполняемой мышцей).
Поскольку миофибриллы представляют собой белковые нити, увеличение количества и поперечного сечения миофибрилл в мышечном волокне напрямую связано с интенсивностью синтеза белка. То, что тренировка интенсифицирует синтез белка - это сегодня неопровержимый факт. Но вот вопрос: как и почему это происходит?
Как строится белок
Молекула белка представляет из себя цепочку аминокислот, число которых колеблется от нескольких десятков до нескольких десятков тысяч. Всего в природе насчитывается более трёхсот видов аминокислот, но для строительства белка живые существа использует только двадцать две. Свойства белка определяются последовательностью аминокислот в цепочке, а также пространственной конфигурацией самой цепочки (так называемыми "вторичной" и "третичной" структурами белка). Строительство молекул белка происходит как из аминокислот, поступающих в организм с белковой пищей, так и из аминокислот, синтезируемых самим организмом. Упрощённо процесс синтеза белка изображён на рисунке 7.
Рис. 7.
Программы строительства всех белков организма записаны в ДНК ядра клетки и её частичных копиях - РНК - в виде последовательности нуклеотидов. Каждая аминокислота записывается определённой комбинацией трёх нуклеотидов, называемой "кодон". Последовательность кодонов в ДНК и РНК определяет последовательность аминокислот в белке. Последовательность нуклеотидов, которая кодирует один белок, называется "ген". Эта последовательность считывается с ДНК и записывается в матричной РНК (мРНК); процесс этот носит название "транскрипция". мРНК - это как бы кусочек ДНК, способный выходить из ядра в протоплазму, где он закрепляется на рибосомах. Транспортные РНК (тРНК) доставляют к мРНК аминокислоты. Один конец тРНК узнаёт на мРНК соответствующий кодон и прикрепляется к нему. Аминокислота, находящаяся на другом конце тРНК, сцепляется с аминокислотой соседней тРНК; таким образом выстраивается цепочка белка.
Синтез белка - это очень сложный процесс, и интенсивность его зависит от огромного числа факторов. Транскрипция мРНК в ядре клетки начинается под воздействием стероидных гормонов, вырабатываемых железами внутренней секреции и переносимыми к клеткам кровью. Проникнув из крови внутрь клеток, гормоны с помощью белков-рецепторов доставляются в ядра и разблокируют участки цепочек ДНК, ответственные за тот или иной белок, после чего, собственно, транскрипция мРНК и становится возможной. Для запуска транскрипции РНК необходимо также развернуть спираль ДНК, распрямить её, для чего используется фермент РНК-полимераза.
Сильнейшее влияние на синтез белка оказывает гормон роста (СТГ или соматотропин). По химическому составу соматотропин сам является белком, поэтому он не может свободно проникать в клетку (в отличие от стероидных гормонов) - он лишь воздействует на рецепторы, расположенные на поверхности клетки. Механизм действия гомона роста до конца не изучен, но уже точно известно, что он стимулирует деятельность РНК-полимераз и рибосомного аппарата клетки.
Помимо всего прочего, для сборки белка требуется наличие в клетке достаточного количества аминокислот и запасов энергии. Без аминокислот не из чего будет строить белок, а энергия нужна для подпитывания механизма сборки белковой молекулы.
Итак, для успешного синтеза белка требуются, как минимум, следующие условия:
- достаточное количество аминокислот в клетке;
- запас энергии в клетке;
- активность ферментов и факторов транскрипции РНК (РНК-полимераз и др.);
- высокий уровень анаболических гормонов в крови (тестостерона и соматотропина);
- наличие в клетке белков-рецепторов тестостерона.
Теперь осталось лишь ответить на вопрос: каким именно образом тренировка влияет на синтез белка?
К сожалению, я вынужден разочаровать читателя: детально объяснить механизм этого влияния на сегодняшнем уровне развития науки невозможно. Если о том, как происходит регуляция синтеза белка в простейших одноклеточных организмах, в каждой клетке которых идёт строительство всех белков, закодированных в ДНК, учёные имеют достаточно полное представление, то регуляция синтеза белка в многоклеточных организмах, когда теоретически каждая клетка может синтезировать все возможные белки, закодированные в ДНК, но синтезирует лишь тот набор белков, который присущ данному типу клеток, пока, увы, остаётся загадкой. Да, гормоно-рецепторный комплекс разблокирует участок ДНК, в котором закодирован определённый белок, но каким именно путём гормон узнаёт, какой именно ген в данный момент необходим клетке - миозин быстрого волокна или миозин медленного волокна, а может быть, миоглобин? Учёным ещё предстоит пройти долгий путь, прежде чем раскроются все тайны синтеза белка. А как же быть до тех пор?
Сегодня существует несколько гипотез, пытающихся объяснить влияние тренировки на синтез белка в мышце. Но все эти гипотезы можно объединить в два конкурирующих направления: первое - теория накопления; второе - теория разрушения.
Суть теории накопления состоит в том, что во время мышечной деятельности в клетке вырабатываются некие факторы-регуляторы, оказывающие влияние на процессы считывания информации с ДНК. Одни учёные относят к этим факторам повышение кислотности среды в результате мышечной деятельности, влияющее на спирилизацию ДНК. Другие же исследователи относят к факторам-регуляторам свободный креатин: при интенсивной деятельности креатинфосфат, содержащийся в клетке, в целях восполнения энергии передаёт свою фосфатную группу на АДФ, превращаясь в креатин, и именно креатин, по мнению упомянутых исследователей, оказывает регулирующее воздействие на ДНК.
Я нисколько не сомневаюсь в том, что подобные процессы и впрямь должны иметь место в регуляции интенсивности белкового обмена, - ведь, как известно, в случае обездвижения мышцы интенсивность синтеза белка в её клетках снижается, то есть движение уже само по себе есть фактор-регулятор белкового синтеза. Но двигательная активность мышц является, скорее, необходимым фактором, обеспечивающим нормальный метаболизм в мышечной ткани, но не достаточным условием, для обеспечения заметной гипертрофии мышц, поскольку своё регулирующее воздействие такие факторы-регуляторы, как повышение уровня креатина или кислотности среды, в наибольшей степени оказывают во время работы мышц, а синтез белка идёт в основном после прекращения нагрузки во время отдыха, когда концентрация факторов-регуляторов уже возвращается к уровню, характерному для состояния покоя.
Куда более полное, на мой взгляд, представление о механизмах регуляции синтеза белков способна дать теория разрушения, суть которой заключается в следующем.
Как я уже писал выше, организм - это саморегулируемая система, настроенная миллионами лет эволюции на поддержание постоянства внутренней среды. Разрушение внутренних структур организма автоматически запускает процессы, направленные на восстановление утраченного равновесия. Так, разрушение белковых структур клетки в здоровом организме активизирует восстановительные процессы синтеза белка, для протекания которых сразу же создаются все необходимые условия. То, что активность синтеза белка в повреждённой ткани в несколько раз выше, чем в нормальных условиях - это факт. Мало того, интенсивные анаболические процессы не могут затихнуть сразу по завершении восстановления повреждённых структур. То есть процессы синтеза белка, равно как и все прочие процессы в организме, имеют некоторую инерцию, так что их результатом почти всегда бывает некоторый избыточный анаболизм, приводящий к превышению уровня белка в клетке над исходным. Другими словами, здесь тоже происходит уже упоминавшаяся мной при рассказе о восстановлению энергетических ресурсов суперкомпенсация. В этом нет ничего особенного: восстановление белковых структур клетки подчиняется общим законам адаптации.
Обычно роль тренировки в гипертрофии мышц исследователи сводят лишь к интенсификации процессов синтеза РНК в ядрах клеток. Между тем общий объём мышцы зависит от количества в ней мышечных клеток и от количества ядер в этих клетках. Согласно утвердившемуся в среде спортивных физиологов представлению, число мышечных клеток задаётся генетически и не меняется в ходе тренировок, - об этом свидетельствуют большинство экспериментов, проводившихся в данном направлении (Шекман Б.С.). Впрочем, имеется и ряд таких экспериментальных данных, которые заставляют усомниться в приведённом постулате (об этом чуть позже).
Объясняется неизменность количества клеток в мышце тем, что ядра мышечной клетки утрачивают способность к делению (равно как и сама клетка) ещё на этапе эмбрионального развития. Однако, как показывает ряд экспериментов (M.Cabric и N.T.James), в ходе тренировок количество ядер в мышечных клетках всё-таки увеличивается.
Но как такое может происходить - ведь разве ядра мышечных клеток не теряют навсегда способность к делению? Откуда же тогда появляются эти новые ядра?
Ответ на данный вопрос содержится в работах учёных, занимавшихся проблемами регенерации травмированной ткани. Как оказалось, на этапе эмбрионального развития далеко не все клетки эмбриона, из которых развивается затем мышечная ткань, сливаются в мышечные волокна и утрачивают способность к делению. Какая-то часть из них (около 10%) остаётся в оболочке волокон в виде клеток-сателлитов. Клетки-сателлиты сохраняют способность к делению на протяжении всей жизни организма и являются резервом восстановления мышечной ткани. А значит, только клетки-сателлиты способны быть источником новых ядер в волокне.
Как показывают эксперименты (А.В.Володина; Р.П.Женевская; А.А.Климов и Р.К.Данилов; Э.Г.Улумбеков), повреждение мышечных волокон приводит к активации клеток-сателлитов, которые, освободившись из оболочки, вступают в цикл деления, а затем сливаются воедино, восстанавливая повреждённые волокна.
Логично предположить, что к активации клеток-сателлитов после тренировки приводят процессы, аналогичные травмам волокон. Многие атлеты знают на собственном опыте, что интенсивная тренировка, особенно после продолжительного перерыва, отзывается болью в последующие несколько дней отдыха. Боль явно свидетельствует о разрушениях внутренней структуры мышц. Тщательное микроскопирование мышц показывает, что в результате тренировок в ряде мышечных волокон нарушается упорядоченное расположение миофибрилл, распадаются митохондрии, а в крови повышается уровень лейкоцитов, как при травмах или инфекционном воспалении (В.И.Морозов; М.Д.Штерлинг с соавторами). Разрушение внутренней структуры мышечного волокна во время тренировки (или, иными словами, микротравма) приводит к появлению в волокне обрывков белковых молекул, что сразу же активизирует лизосомы, которые "переваривают" с помощью содержащихся в них ферментов подлежащие уничтожению белковые структуры. Если лизосомы не справляются с объёмом повреждений, то примерно через сутки наблюдается пик активности уже более мощных "чистильщиков" - фагоцитов. Фагоциты - это клетки, живущие в межклеточном веществе и крови. Основная их задача - уничтожение повреждённых тканей и чужеродных микроорганизмов. Именно продукты жизнедеятельности фагоцитов и вызывают воспалительные процессы и боль в мышцах примерно через сутки после тренировки. По-видимому, как раз благодаря деятельности лизосом и фагоцитов повреждается оболочка мышечного волокна, и из неё высвобождаются клетки-сателлиты. Освободившись, клетки-сателлиты начинают цикл деления и сливаются с повреждённым волокном, увеличивая в нём количество ядер и, тем самым, повышая его потенциал в плане синтеза белка.
Учитывая все вышеизложенные обстоятельства, я бы не стал полностью исключать возможность высвобождения клеток-сателлитов в межклеточное пространство и слияния их в новые волокна (кстати, такое слияние достоверно наблюдалось при обширных повреждениях мышечной ткани - правда, новые волокна в этом случае образовывались только взамен утраченных, что, естественно, не приводило к общему увеличению числа волокон в мышце).
На мой взгляд, если повреждения мышечного волокна не столь обширны, чтобы привести его к гибели, а клетки-сателлиты тем не менее всё же пошли по пути слияния в новое волокно, то должна иметь место гиперплазия, увеличение числа клеток. Тем более, что есть ряд экспериментов, выбивающихся из общепринятых представлений о невозможности гиперплазии. Так, W.Goneya удалось на 19-20% увеличить количество мышечных волокон в лапах кошек, которых он заставлял тренироваться с прогрессирующей нагрузкой. Мало этого, S.Yamada, N.Buffinger, J.Dimario & R.Strohman (1989) и L.Larson & P.A.Tesch (1986) сравнили пробы мышечной ткани элитных бодибилдеров и контрольной группы людей, обладавших обычной мускулатурой, и этот анализ показал, что поперечное сечение мышечных клеток у элитных бодибилдеров было лишь незначительно больше, чем у представителей контрольной группы - в то время как поперечное сечение самих мышц у представителей обеих групп различалось весьма существенно. То есть бодибилдеры обладали заметно большим количеством волокон по сравнению с контрольной группой - и это может быть объяснено либо гиперплазией волокон, либо же тем, что элитные бодибилдеры все как один имели прямо с рождения аномально большое число аномально тонких волокон (поскольку до тренировок мускулатура у всех элитных бодибилдеров была самых обычных объёмов). Второе объяснение выглядит, безусловно, не очень правдоподобным, поскольку требует слишком уж многих и редких совпадений.
Впрочем, я не стану зацикливаться на вопросе с гиперплазией и, поскольку возможность последней у человека считается недоказанной, буду исходить из того, что рост мышц происходит исключительно по причине гипертрофии уже существующих волокон. Но ведь и одной из причин гипертрофии мышечных волокон тоже является увеличение в них количества клеточных ядер - что по оказываемому эффекту сравнимо с гиперплазией.
Итак, вернёмся к рассмотрению процессов, происходящих в мышце во время восстановления после тренировки. По завершении этапа саморазрушения повреждённых тренировкой структур начинается этап компенсации - восстановления внутренней структуры волокон. Конечно, данный этап не всегда заканчивается суперкомпенсацией. При слишком обширных повреждениях или отсутствии условий для восстановления результат может быть диаметрально противоположным.
Против теории разрушения чаще всего приводят следующее возражение: "Если причиной роста являются микротравмы, то почему же мышца не растёт, когда её бьют палками?" Ответ на данный вопрос можно найти в докторской диссертации А.В.Володиной. Целью этой работы являлось изучение процессов, препятствующих реализации регенерационного потенциала, заложенного в мышечном волокне. Эксперименты показали, что в условиях обширного повреждения волокон, сопровождающегося ишемией (нарушением кровоснабжения) повреждённых тканей, вызывающей дефицит в снабжении волокна кислородом и питательными веществами, одна часть клеток-сателлитов гибнет и поглощается фагоцитами, а другая часть идёт по пути превращения не в мышечные клетки, а в фибробласты (клетки, производящие коллаген). В итоге место повреждения затягивается соединительной тканью, а количество волокон в мышечной ткани снижается по причине частичной их гибели от повреждений.
При микротравмах же волокна (то есть при повреждении одной лишь внутренней структуры мышечной клетки без нарушения её целостности), в отличие от травмы целой мышцы, снабжение волокна кислородом, а также его иннервация не страдают - следовательно, в этом случае нет факторов, приводящих к гибели клеток-сателлитов и целых волокон.
В общем, если объём микротравм, полученных в ходе тренировки, не слишком велик для срыва восстановительных процессов, но достаточен для активации клеток-сателлитов, то в подвергшихся тренировочной нагрузке волокнах увеличивается количество клеточных ядер. Восстановление энергетических ресурсов после тренировки приводит к суперкомпенсации энергетических структур, а лизис разрушенных тренировкой белков увеличивает содержание свободных аминокислот непосредственно в волокнах, что в совокупности создаёт благоприятные условия для интенсификации процессов синтеза белка. При условиях достаточного по времени отдыха, отсутствия новых стрессовых нагрузок, адекватного снабжения мышечных клеток энергией и пластическими ресурсами (аминокислотами) интенсивные процессы восстановления приводят к накоплению в волокнах белковых структур сверх того уровня, который имел место до тренировки - то есть происходит гипертрофия мышц.
Надо отметить, что последовательность протекания фаз общей неспецифической адаптационной реакции (синдрома стресса) такова, что обеспечивает поддержку описанных выше регенерационных процессов на системном уровне. Первая катаболическая фаза стресс-реакции сопровождается выбросом кортикостероидов, что приводит к мобилизации энергетических ресурсов организма и обеспечивает выработку ферментов лизосом и фагоцитов, расщепляющих белок (кортикостероиды являются теми гормонами, которые активируют у клеток гены протеолитических ферментов), что способствует скорейшему очищению волокон от повреждённых структур. В последующей фазе стресс-реакции синтез кортикостероидов сменяется синтезом анаболических гормонов, что обеспечивает на системном уровне компенсаторный анаболизм.
Что такое микротравма?
Остаётся открытым следующий вопрос: что вызывает разрушение внутренней структуры волокна и является, тем самым, стрессом для мышцы? Прежде чем ответить на этот вопрос, придётся вспомнить механизм сокращения мышц, описанный в I части данной статьи.
Учёный и пауэрлифтёр Фредерик Хэтфилд, считающий роль микротравм в тренировочном процессе скорее отрицательной из-за необходимости длительного восстановления, полагает, что причиной микротравм является повреждение миофибрильных нитей во время негативных повторений. Вот как Хэтфилд описывает механизм таких повреждений:
"Так как количество перекрёстных мостиков, старающихся сократить мышцу недостаточно, они буквально "продираются" сквозь мостики соединений нити, стараясь вызвать концентрическое сокращение. Однако сцепиться как следует им не удаётся, они срываются и повреждаются. Эти действия, очень напоминающие протаскивание щетины одной зубной щетки через другую, сопровождаются сильным трением, и мышечные нити разрушаются."
Мне же такая попытка объяснения причин микротравмирования мышечных волокон кажется неудовлетворительной.
Во-первых, микротравмы возникают не только при негативных повторениях, но и при позитивном движении, что легко можно наблюдать на практике, делая, например, становые тяги с полностью исключённой негативной фазой движения.
Во-вторых, использовать термин "трение" для описания взаимодействия молекул – не совсем корректно. Понятие силы трения введено в физике для описания на макроуровне поверхностного взаимодействия тел специально для того, чтобы абстрагироваться от истинной природы "трения": электромагнитного взаимодействия молекул поверхностного слоя, носящего случайный характер. При сокращении же мышц взаимодействие актина и миозина вполне упорядоченно, так что ссылка на «трение», в попытках объяснить причину повреждения сократительных белков, не достаточна, необходимо выявить механизм этого процесса. А сам же механизм, уважаемый мэтр, как видно из цитаты представляет себе не четко и даже принципиально ошибочно. «Плохое сцепление» миозина с актином причиной повреждения миофибрилл быть не может, ведь, как правило, при предельной нагрузке разрушается не то, что плохо закреплено, а как раз то, что закреплено жестко и не имеет возможности «уступить» напряжению. Потому механизм повреждения миофибрильных нитей, должен носить несколько иной характер, и, как мне кажется; мне удалось смоделировать этот механизм в результате более детального изучения биохимических процессов, происходящих при сокращении мышечной клетки.
Для понимания того, как происходит повреждение миофибрильной нити, читателю придётся ещё раз, - причём теперь уже более подробно - ознакомиться с фазами движения миозинового мостика (рис. 8).
Рис. 8. (1 и 3 шарнирные участки, 2-эластичный компонент, 4 – глобулярная головка миозина)
Молекула миозина состоит из лёгких и тяжёлых цепей меромиозина. Тяжёлая цепь меромиозина содержит в себе две глобулярные головки (4) (на рисунках для простоты изображена только одна головка), и обе эти головки через шарнирный участок (3) связаны с эластичным компонентом (2). Лёгкая цепь меромиозина соединена с тяжёлой цепью шарнирным участком (1).
В первой фазе, ещё до сцепления с актином, головка миозинового мостика несёт в себе АТФ. Во второй фазе, под действием фермента АТФазы, локализованного в самой головке миозина, АТФ гидролизуется и расщепляется на АДФ и неорганический фосфат, причём происходит это на не связанном с актином миозине. После чего, благодаря повороту в шарнирном участке 1, миозиновая головка соединяется с актином - что является третьей фазой процесса. После соединения с актином головка миозина проворачивается в шарнирном участке 3, благодаря чему происходит натяжение эластичного компонента и мостик генерирует силу. Для поворота головки и совершения рабочего хода мостика используется энергия, освобождённая при диссоциации продуктов гидролиза АТФ. Основная доля этой энергии выделяется при высвобождении неорганического фосфата (переход из третей фазы в четвёртую), а меньшая часть - при высвобождении АДФ (переход из четвёртой фазы в пятую). В пятой фазе возникает сцепленное или "ригорное" состояние мостика, то есть мостик уже не генерирует движущую силу, но остаётся сцепленным с актином, и вывести его из этого состояния может только молекула АТФ. Поглощая АТФ, головка миозина переходит в шестую фазу, после чего отцепляется от актина, возвращаясь в исходное состояние (первую фазу).
Разбираясь с фазами движения миозинового мостика, я сразу обратил внимание на тот факт, что для отцепления мостика от актина требуется молекула АТФ. При скольжении нитей миозина вдоль актина под действием сил тянущих мостиков (в случае позитивного движения) или под действием внешней силы (в случае негативного движения) сцепленные мостики растягиваются и мешают движению - этим, как я уже писал, и объясняется различие в силе, развиваемой волокном при удлинении и при сокращении, а также при сокращениях с разной скоростью. Понятно, что когда АТФ в мышце содержится в достаточном количестве, все мостики успевают отцепиться вовремя - но что должно происходить при очень сильном снижении концентрации АТФ в мышце? Несомненно, тут должно происходить следующее: молекула АТФ вполне может не успеть отцепить головку миозина до того, как растяжение мостика превысит предел его прочности - и сцепленный мостик тогда, естественно, разорвётся (рис. 9). Разумеется, место разрыва мостика изображено мной достаточно условно, я не могу точно указать, где находится самое слабое звено в цепи.
Рис. 9.
Все, наверное, слышали о состоянии трупного окоченения мышц. Наступает оно именно потому, что в мёртвом организме запасы АТФ не восполняются, и мостики миозина оказываются накрепко сцепленными с актином. Что произойдёт с мышцей трупа, если её насильно растянуть? Понятно, что - разрыв. Так вот нечто подобное должно происходить и с отдельными волокнами живой мышцы при растяжении, если в них произойдет резкое снижение уровня АТФ.
Интересно, что при недостатке АТФ наиболее разрушительным воздействием на мышцы должна обладать негативная фаза движения. Как уже писал, мостик генерирует силу благодаря натяжению эластичного компонента, после проворота головки миозина ("гребка"). В случае позитивного движения скольжение нитей после "гребка" поначалу приводит к ослаблению натяжения эластичного компонента, и только дальнейшее смещение нитей под действием других мостиков может привести к последующему растяжению данного "ригорного" мостика. В случае же негативного движения скольжение нитей под действием внешней силы происходит в сторону, противоположную направлению силы упругости эластичного компонента мостика, поэтому относительное смещение нитей после "гребка" сразу же приводит к ещё большему натяжению эластичного компонента "ригорного" мостика (рис. 10). Таким образом, вероятность вынужденного разрыва актино-миозинового комплекса в условиях низкого уровня АТФ значительно выше в негативной фазе движения.
Проведённый анализ показывает, что причиной микротравм мышц при тренировках, с большой вероятностью, может быть именно снижение уровня АТФ в ряде активно работающих волокон. Тогда становится понятным, почему большинство специалистов возлагают вину за повреждение мышц именно на негативную фазу движения.
Рис. 10.
Некоторые специалисты (например, Мак-Комас) видят причину повреждения мышц при негативном движении в микроразрывах оболочки волокон при её растяжении. На первый взгляд, волокно, а следовательно, и его оболочка, могут быть растянуты лишь настолько, насколько позволяют суставы и связки (естественный ход мышцы). Никакого растяжения оболочки волокна, приводящего к микротравмам, при движении без нагрузки не возникает. Почему же негативное движение под нагрузкой должно приводить к растяжению оболочки мышечных волокон? Мак-Комас приводит в своей книге мнение, что в условиях негативного движения отдельные саркомеры могут проявлять нестабильность и растягиваться быстрее остальных, в результате принимая длину большую, чем они имеют при полном растяжении волокна в нормальных условиях.
Рис. 11
Если проведённый мной анализ поведения актино-миозинового комплекса в условиях низкого уровня АТФ является недостаточным для объяснения разрушительного воздействия негативных повторений, и нестабильность и сверхрастяжение саркомеров действительно наблюдались на практике (из текста Мак-Комаса неясно, зафиксировано ли в эксперименте именно сверхрастяжение саркомеров или оно было привлечено просто для теоретического объяснения наблюдаемого факта повреждения волокон), то что же тогда делает растяжение саркомеров нестабильным?
Примечательно, что микротравмы волокон, а соответственно, и возможная нестабильность саркомеров проявляются не при любом негативном движении, а лишь при достаточно интенсивном и длительном. Смею предположить, что причина нестабильности саркомеров может крыться также в критическом снижении уровня АТФ в мышечных волокнах, приводящем к ригидности (или некоторому замедлению растяжения) части саркомеров. Растяжение волокна до его исходных размеров в этих условиях может привести к сверхрастяжению остальных (неригидных) саркомеров (рис. 11).
Итак, то, что при движении, сопровождающемся недостатком АТФ, нарушается нормальное сокращение-растяжение актино-миозиновых нитей и возникают внутренние напряжения, приводящие к микротравмам волокна, - неоспоримо. Но дабы быть уверенными в том, что микротравмы мышц, возникающие в ходе тренировок, действительно имеют именно ту природу, которую я предложил, необходимо понять, возможно ли в ходе тренировки соответствующее снижения уровня АТФ в мышечных волокнах, а если возможно, то при каких условиях.
Как мне показалось поначалу, приведённые соображения должны служить исчерпывающим объяснением действенности системы Ментцера: работа до "отказа" приводит к истощению запасов АТФ и, соответственно, к разрывам в актино-миозиновом комплексе, что становится стрессом для мышцы и вызывает адаптационную реакцию.
Однако на самом деле данная "отказная" схема генезиса микротравмы весьма далека от реальности: как выяснилось, в большинстве случаев "отказ" наступает вовсе не из-за исчерпания запасов АТФ - эксперименты показывают, что уровень АТФ может оставаться достаточно высоким даже в уставшей мышце.
Усомниться в правильности "отказной" схемы меня заставил ещё и тот факт, что появление боли в мышцах - этого вестника микротравм - не имеет однозначной связи с работой до "отказа". Ведь, с одной стороны, на начальном этапе тренинга боль в мышцах возникает почти при любой более-менее интенсивной работе, то есть независимо от того, был "отказ" или нет. А с другой стороны, регулярные тренировки приводят к тому, что работа даже сверх "отказа" (читинг, "стриптиз" и др.) не вызывает уже никакой посттренировочной боли - боль возвращается только после продолжительного перерыва в тренировках.
Все эти противоречащие первоначально найденному "решению" факты и вынудили меня заняться изучением феномена "отказа".
Что такое "отказ" мышцы
"Отказ" - понятие довольно условное. Это не какое-то особое состояние мышцы, а просто её неспособность развить силу, необходимую для преодоления внешней нагрузки.
Факторы утомления, приводящие к снижению силы мышечного сокращения, принято разделять на центральные и периферические.
Центральное утомление развивается в нейронах коры головного мозга, генерирующих импульс к сокращению, а также в нисходящих путях и двигательных мотонейронах спинного мозга, и выражается в снижении количества активных двигательных мотонейронов и в уменьшении частоты их импульсации. Развитие утомления в двигательных центрах коры головного мозга принято называть "охранительным торможением".
Периферическое утомление проявляется в ухудшении передачи сигнала с аксона на мышечное волокно (утомление в нервно-мышечном синапсе) и в снижении силы сокращения самих волокон, даже в условиях их нормальной активации.
Причиной нарушения передачи сигнала в нервно-мышечном синапсе является накопление в мышце ряда продуктов метаболизма при её двигательной активности (Романовский Д.Ю.). Но даже если сигнал от мотонейрона достигает поверхности мышечных волокон и вызывает возбуждение мембраны волокна, полноценное сокращение волокна ещё не гарантировано, так как накопление метаболитов при высокочастотной стимуляции волокна приводит к нарушению распространения сигнала от поверхности волокна к терминальным цистернам внутренних миофибрилл, в результате чего в глубоко лежащих миофибриллах кальций перестаёт выбрасываться в саркоплазму, и миозиновые мостики не имеют возможности сцепляться с актином и генерировать силу - то есть наблюдается так называемое нарушение сочетания возбуждение-сокращение (Дж. Мак-Комас). Мак-Комас считает нарушение сочетания возбуждение-сокращение ведущим фактором периферического утомления при интенсивных сокращениях.
Но кроме факторов утомления, связанных с нарушениями процессов генерации и распространения нервного импульса, существуют и иные причины, приводящие к снижению силы, развиваемой мышечными волокнами - даже в условиях их полной активации. Как можно видеть из модели скользящих нитей, сила отдельного волокна зависит от количества одновременно тянущих миозиновых мостиков. Биохимических причин снижения силы, развиваемой мостиком в генерирующих силу фазах (III, IV) не существует (во всяком случае, пока об этом ничего не известно), поэтому сила мышечного волокна (при его достаточном возбуждении) может снизиться только по следующим причинам:
1) из-за увеличения времени пребывания мостиков в ригорном (сцепленном, не генерирующем силу) состоянии (фаза V, VI);
2) из-за увеличения времени пребывания мостиков в расцепленном состоянии (фаза I, II).
Время нахождения мостика в ригорном состоянии зависит от того, насколько быстро АТФ вступает в контакт с головкой миозина. Понятно, что это время должно зависеть от концентрации АТФ в мышце. Чем выше концентрация АТФ тем более вероятен контакт молекулы АТФ с миозиновым мостиком и тем меньше время нахождения мостика в ригорном состоянии. А это значит, что сила волокна зависит от концентрации АТФ. То есть при прочих равных условиях волокно с высокой концентрацией АТФ будет сильнее такого же точно волокна, но с меньшей концентрацией АТФ. Как известно, воспроизводство АТФ за счёт креатинфосфата происходит почти мгновенно, поэтому можно с уверенностью утверждать, что концентрация АТФ при работе мышцы зависит от концентрации креатинфосфата.
Итак: чем выше концентрация энергетических фосфатов (АТФ и креатинфосфата) в мышечном волокне, тем выше сила, развиваемая этим волокном.
Концентрация энергетических фосфатов оказывает второе по значимости влияние на силу мышечного волокна (при условии его полной активации) после такого фактора, как количество и поперечное сечение миофибрилл. Это положение имеет прямое практическое подтверждение: атлеты, повышающие уровень содержания креатинфосфата в своих мышцах за счёт приёма креатина в качестве пищевой добавки, отмечают заметную прибавку в силе.
Надо отметить, что зависимость силы волокна от концентрации энергетических фосфатов не является линейной. При высоких концентрациях, когда время ожидания контакта АТФ с головкой миозина становится меньшим или сопоставимым со временем, необходимым для протекания химической реакции, приводящей к отделению головки миозина от актина, повышение концентрации АТФ и креатинфосфата уже мало влияет на скорость переключения мостиков и, соответственно, на силу волокна. Зато низкие концентрации АТФ и креатинфосфата существенно снижают силу волокна, что может служить одной из причин "отказа".
Теперь подошла очередь рассмотреть второй фактор, уменьшающий силу сокращения волокна: увеличение времени пребывания мостиков в разомкнутом состоянии (в фазах I и II). Последнее чаще всего происходит в результате снижения скорости гидролиза АТФ и расщепления её на АДФ и неорганический фосфат. В свою очередь, снижение скорости гидролиза является, как правило, следствием понижения активности АТФазы миозина (фермента, катализирующего реакцию гидролиза АТФ). Что же может понижать активность АТФазы?
Расщепление АТФ и его воспроизводство за счёт креатинфосфата вызывает накопление в мышце ортофосфорной кислоты, гликолиз ведёт к повышению концентрации в саркоплазме молочной кислоты, окисление же, в свою очередь, "отравляет" мышцы угольной кислотой. Активность АТФазы как раз очень сильно зависит от кислотности среды. Как показывают эксперименты, максимум АТФазной активности достигается в среде, близкой к нейтральной (рН=7). При смещении pH среды мышцы в кислую сторону активность АТФазы снижается, а при падении рН мышцы до 5 АТФазная активность близится к нулю (П.Г.Богач с соавторами; Б.Ф.Поглазов). Таким образом, в результате накопления кислых продуктов метаболизма АТФаза миозина постепенно снижает скорость гидролиза АТФ, и миозиновые мостики теряют способность сцепляться с актином - то есть мышца уменьшает силу сокращения, несмотря даже на поступающий от мотонейрона сигнал.
Таким образом, "отказ" мышцы является результатом влияния сразу нескольких факторов утомления, доля каждого из которых в конечном результате определяется интенсивностью и длительностью работы мышцы. При этом снижение концентрации АТФ в мышце, хотя и наблюдается в небольшом диапазоне с 5 ммоль/кг до 3 ммоль/кг (Н.И.Волков), не является доминирующим фактором утомления, и "отказ" мышцы может возникать даже при высоком уровне АТФ. Скажу больше: все механизмы мышечного утомления направлены на прекращение мышечной активности именно до истощения запасов энергии - для предотвращения необратимых последствий для мышц и всего организма.
Но то, что при утомлении не фиксируется кардинальное снижение концентрации АТФ в мышце, ни в коей мере не может быть аргументом в пользу того, что снижение концентрации АТФ невозможно ни при каких условиях. Во-первых, в экспериментах, в которых проводились измерения концентрации АТФ, как правило, фиксировалось среднее значение уровня АТФ по мышце - а это всё равно что средняя температура больных по палате. При определённом количестве АТФ в пробе мышечной ткани концентрация АТФ в отдельных волокнах, а уж тем более в отдельных участках волокон может очень сильно отличаться от среднемышечного показателя. Во-вторых, биопсия (проба) утомлённой мышечной ткани совершалась уже после прекращения движения, а поскольку скорость метаболических процессов крайне высока, то измерения показывали уровень АТФ не в сокращающейся мышце, а в мышце через некоторое время (пусть и весьма короткое по человеческим меркам) после прекращения работы. В-третьих (и это самое главное), практически все биохимические эксперименты по измерению уровня АТФ традиционно проводились на мышцах, утомлённых на велотренажере, беговой дорожке и аналогичных лабораторных установках, между тем как микротравмы мышц появляются после нагрузки такого рода весьма редко - а это значит, что существенное снижение уровня АТФ в подобных упражнениях вряд ли происходит.
Таким образом, относительное постоянство средней концентрации АТФ в мышце, обнаруживаемое в экспериментах, вовсе не исключает возможность локального временного снижения уровня АТФ в отдельных саркомерах. Для ответа на вопрос, при каких условиях проявление такой нестабильности в концентрации АТФ наиболее вероятно, следует обратиться к рассмотрению последовательности активации метаболических процессов в мышцах.
Ещё раз об энергетике
Резкий переход к интенсивной мышечной деятельности из состояния покоя требует столь же резкого увеличения скорости производства энергии. Для достижения максимальной мощности основных источников воспроизводства энергии (гликолиза в быстрых волокнах и окисления в медленных) требуется определённое время. Так, скорость воспроизводства АТФ за счёт гликолиза достигает своего максимума только через 20-30 секунд после начала интенсивной работы. Хотя, по некоторым данным, может происходить и более быстрая активация гликолиза (до 5 секунд), а столь медленное его разворачивание в обычных условиях связано с тем, что гликолиз не получает достаточных стимулов для развёртывания, пока сохраняется высокий уровень креатинфосфата в мышцах. Для достижения же максимальной скорости окислительного процесса требуется ещё больше времени, и связано это, в основном, с необходимостью оптимизации процессов доставки кислорода. Таким образом, скорость окисления становится максимальной лишь через 1-2 минуты после начала работы мышц. Между тем мышца развивает максимальную мощность с первых же секунд после поступления сигнала к сокращению. Причём мощность оного сокращения такова, что гликолиз вкупе с окислением (даже при условии максимальной активации данных источников) не в состоянии обеспечить скорость воспроизводства АТФ, необходимую для поддержания этой наивысшей мощности.
Приведение в соответствие скоростей расхода и воспроизводства АТФ во время работы мышцы идёт сразу по двум направлениям. Во-первых, постепенная активизация гликолиза и окисления увеличивает количество АТФ, синтезируемого в единицу времени за счёт этих источников. Во-вторых, накопление продуктов метаболизма в результате интенсивной мышечной деятельности приводит к развитию мышечного утомления и снижению силы сокращения и, соответственно, скорости расхода энергии. Благодаря этим двум процессам скорости расхода и воспроизводства АТФ выравниваются, и в дальнейшем работа идёт уже с постепенно снижающейся мощностью, но зато с сохранением равновесия между количеством потребляемого и синтезируемого АТФ. Таким образом, обеспечивается стабильность уровня АТФ в мышце и "отказ" наступает не вследствие истощения запасов АТФ, а из-за снижения сократительной способности мышц в результате развития описанных выше процессов утомления.
До выравнивания скоростей расхода и воспроизводства энергии дефицит АТФ восполняется за счёт имеющегося в мышце креатинфосфата. То есть креатинфосфат играет роль буфера, сглаживающего разницу в скоростях воспроизводства и потребления АТФ при резко возрастающих нагрузках и обеспечивающего постоянство концентрации АТФ. В обычной жизни мы редко используем свои мышцы на пределе их энергетических возможностей, поэтому они вполне успешно обходятся небольшим запасом креатинфосфата и ферментов, обеспечивающих протекание реакций гликолиза и окисления. Но если дать нагрузку, значительно превышающую привычную, то запас креатинфосфата в наиболее активно работающих волокнах очень быстро иссякнет - задолго до того момента, когда скорости потребления и производства АТФ за счёт основных, более ёмких источников придут в равновесие.
Таким образом, при низком уровне креатинфосфата, слишком интенсивном расходе энергии и неадекватной скорости её воспроизводства и становится возможным падение уровня АТФ ниже критического (обеспечивающего своевременное отцепление головок миозина от актина) - причём не только в отдельных саркомерах, но также и в целых волокнах. В этих условиях продолжение сокращения миофибрилл под действием активных мостиков (при позитивном движении) либо их, миофибрилл, растяжение под действием внешней силы (при негативном движение), как я показал чуть выше, должно приводить к разрушению отдельных цепей миозина и даже целых волокон.
Итак, вот он, главный секрет тренировочного стресса: микротравмы мышечного волокна возникают при условии критического понижения в нём запасов креатинфосфата.
Именно этим и объясняется тот факт, что эффект наиболее разрушительного воздействия на быстрые волокна достигается при интенсивной работе длительностью от семи до тридцати секунд. Если нагрузка позволяет поддерживать сокращение мышц дольше тридцати секунд, то расход энергии в относительно тренированной мышце, скорее всего, будет недостаточно интенсивным для того, чтобы концентрация АТФ и креатинфосфата упала ниже критического уровня. В свою очередь, когда нагрузка бывает велика настолько, что работа может продлиться не дольше нескольких секунд (1-2 повторения), имеет место совсем иная картина. Скорость расхода энергии в этом случае оказывается очень высока, но "отказ", вызываемый уже самым незначительным уменьшением силы волокон, происходит ещё до момента исчерпания запасов креатинфосфата - и стрессовая ситуация, тем самым, просто не успевает сложиться.
Понятно, что при максимально интенсивном режиме работы мышц добиться микротравм в окислительных (медленных) волокнах совершенно невозможно - ведь скорость расхода АТФ в медленных волокнах значительно ниже, чем в быстрых, поэтому запасы креатинфосфата истощаются слишком плавно. Получение микротравм в медленных волокнах было бы, пожалуй, практически нереальным, если бы для активации окислительных процессов требовалось столько же времени, сколько его требуется для активизации гликолиза. Однако, как я упоминал ранее, максимум выработки АТФ за счёт окисления достигается через 1-2 минуты работы, поэтому есть шанс добиться микротравм даже и в медленных волокнах - нужно только успеть получить дефицит креатинфосфата, а затем и АТФ в результате интенсивной работы в течении 1-2 минут до того как выработка АТФ в медленных волокнах достигнет максимальных значений.
То, что окислительные волокна энергетически более устойчивы и меньше подвержены микротравмам, на мой взгляд, и является объяснением того фиксируемого большинством спортивных исследователей факта, что гипертрофия мышц реализуется в основном благодаря гипертрофии быстрых волокон.
Предложенная мною модель возникновения микротравм неплохо согласуется ещё с одним физиологически важным явлением, известным каждому спортсмену, но так до сих пор и не получившему сколько-нибудь приемлемого объяснения: посттренировочная боль особенно сильна после первых занятий и практически полностью исчезает при регулярных тренировках - но появляется вновь в случае длительного перерыва в тренировочных нагрузках. Последнее явление с позиции приведённой выше модели объясняется очень просто: реакцией организма на тренировку, помимо усиления синтеза белка, является также накопление в мышце креатинфосфата и повышение концентрации и активности ферментов гликолиза и окисления. Соответственно, добиться исчерпания возросших запасов креатинфосфата до выравнивания скоростей расхода и восстановления АТФ за счёт основных источников энергии становится сначала всё труднее, а затем уже и просто невозможно, поскольку сокращение мышц становится энергетически всё более и более устойчивым.
А вот и ещё один очевидный вывод: накопление креатинфосфата и рост мощности гликолиза и окисления в результате тренировок, с одной стороны, повышают силу мышц и способствуют росту их работоспособности, но, с другой стороны, препятствуют созданию стрессовых ситуаций и снижают воздействие тренировки на мышцу, замедляя тем самым дальнейшие адаптационные реакции.
Явление постепенного "привыкания" мышц к нагрузке уже давно известно специалистам бодибилдинга под названием "тренировочное плато". Но вот сами биохимические причины процессов, приводящих к снижению восприимчивости мышц к тренировке, были неизвестны. Поэтому для выхода из тренировочного плато специалисты чаще всего советовали сменить режим работы, заменить выполняемые упражнения, изменить тренировочный сплит либо увеличить объём нагрузки, чтобы как-то по-новому воздействовать на мышцу и добиться от неё ответной реакции.
Между тем для того, чтобы достигнуть снижения концентрации АТФ в условиях накопления в мышце всё большого и большего количества креатинфосфата и роста её энергообменных возможностей, необходимо повышать скорость расхода энергии - для чего в распоряжении атлета имеется не так уж и много способов. Один из них - повышение веса снаряда. Однако постоянное увеличение веса снаряда с целью интенсифицировать нагрузку приводит к тому, что количество повторений в упражнении опускается ниже 4-х, что, как я отмечал выше, не может оказать на мышцу необходимого воздействия.
Увеличение же объёма работы за счёт роста количества упражнений и подходов не всегда оказывается эффективным - ведь если интенсивность расхода энергии недостаточно высока для исчерпания накопленного в мышце креатинфосфата до выравнивания скоростей расхода и синтеза АТФ и стрессовая ситуация не наступает в первом же подходе, то последующие подходы, скорость расхода энергии в которых меньше, чем в первом подходе, ввиду остаточного накопления продуктов метаболизма, тем более не дадут нужного эффекта. (Напоминаю, что уровень креатинфосфата в мышце восстанавливается в течение нескольких минут, в то время как молочная кислота, один из главных метаболитов утомления, полностью выводится из мышцы лишь через несколько часов после тренировки.) Таким образом, по мере приспособления мышц к нагрузкам тренировка из стрессового фактора превращается в обычную работу. То есть теперь спортсмен может тренироваться хоть каждый день не испытывая особой перетренированности, поскольку для восстановления мышц ему оказывается достаточным всего лишь одного-двух дней отдыха - именно потому, что привычная тренировка не вызывает разрушения волокон.
Есть ли, однако, смысл в подобного рода тренировках? Безусловно, есть: ведь при постепенном наращивании объёма работы будет расти, например, объём саркоплазмы волокон - за счёт накопления энергетических веществ. Однако подобный рост мышц далеко не беспределен. Без увеличения количества и объёма миофибрилл, а особенно количества клеточных ядер в волокнах (кстати, не стоит исключать тут и возможность увеличения количества самих волокон), добиться значительной гипертрофии мышц просто невозможно.
Как же быть, неужели это тупик?
Похоже, одно из решений проблемы в рамках бодибилдинга найдено Майком Ментцером, хотя в поисках этого решения он исходил из не вполне верных посылок.
Наблюдая за своими учениками, Ментцер заметил, что при принятой в бодибилдинге частоте тренировок (2-3 тренировки в неделю на одну группу мышц) первоначальный прогресс очень быстро прекращается и наступает застой. Полагая, что причина всего этого кроется в перетренированности - то есть срыве восстановительных способностей организма - Ментцер начал экспериментировать с уменьшением объёма нагрузок и увеличением времени отдыха. Итогом его экспериментов стал знаменитый "Супертренинг" - тренировки одной группы мышц не чаще, чем раз в одну-две недели в одном подходе. При таких тренировках прогресс, по утверждению Ментцера, идёт непрерывно до полного исчерпания потенциала атлета. С "классической" точки зрения на тренировочный процесс, при столь редких и малообъёмных тренировках сколько-нибудь заметный прогресс вообще невозможен.
Так в чем же секрет "Супертренинга"?
Эксперименты над лабораторными животными (А.Ф.Краснова, 1960) показали, что после прекращения тренировок концентрация креатинфосфата, гликогена и ферментов, ускоряющих реакции производства энергии, возвращается к дотренировочному уровню уже через 1-3 недели отдыха, но вот содержание сократительных белков в мышечном волокне остаётся на достигнутом тренировкой уровне ещё 30-40 дней после прекращения тренировок. Таким образом, структурный след адаптационных реакций, проявляющийся в виде накопления сократительных белков мышц, оказывается достаточно стойким, а так называемая "потеря формы" при перерыве в тренировках в краткосрочной перспективе является следствием снижения энергетического потенциала мышцы. Соответственно, рекомендуемый Ментцером отдых между тренировками одной мышцы (1-2 недели) не может привести к деадаптации сократительных структур мышц, чего как огня боятся спортсмены. В то же время такой длительный перерыв в тренировках не создаёт условий для закрепления возникающих в ходе отдельных тренировок адаптационных изменений в энергетике мышц. Тем самым избирательно делается акцент на саму важную для бодибилдера адаптационную реакцию - накопление сократительных структур, и искусственно сдерживаются другие адаптационные процессы, приводящие к снижению восприимчивости мышц к нагрузке.
Итак, оказывается, столь длительный перерыв между тренировками в "Супертренинге" необходим не только для обеспечения максимально полного восстановления мышц после нагрузки, как полагал Ментцер, но и для предотвращения излишней адаптации мышц, что обеспечивает регулярное создание стрессовых ситуаций. По степени воздействия на мышцу каждая последующая тренировка в "Супертренинге" Ментцера практически равносильна первой.
В своей книге Ментцер утверждает, что атлет, несколько лет интенсивно тренировавшийся 4-5 раз в неделю, сможет получить эффект от его системы тренировок только после не менее чем месячного отдыха. Столь продолжительный перерыв в тренировках, по моему мнению, как раз и необходим для понижения "тренированности" мышц. Сам же Ментцер считал, что длительный отдых необходим исключительно для восстановления организма, а причина остановки в росте массы кроется в якобы хронической "перетренированности" спортсменов, занимающихся по классическим методикам.
Но главной ошибкой Ментцера является не смешение понятий тренированности и перетренированности, а отрицание какого-либо иного пути в тренировках, кроме его собственного. Другой путь, более сложный в понимании и применении, как это ни странно, известен уже достаточно давно - это циклирование нагрузки и периодизация.
В тяжёлой атлетике, пауэрлифтинге и ряде других силовых видов спорта невозможность постоянного непрерывного прогресса является неопровержимым фактом. Опытным путём установлено, что для того, чтобы сдвинуться с мёртвой точки, необходимо отступить назад, снизить нагрузку и затем начать новое наступление на предельный вес. При таком подходе спортсмены могут позволить себе тренироваться до шести раз в неделю и не испытывают никакой перетренированности (которая, по мнению Ментцера, неминуемо должна наступить), а наоборот, добиваются нового, более высокого результата.
Как же в рамках предложенной мной теории объясняется необходимость циклирования нагрузки?
Как отмечалось во второй части, сила мышц зависит не только от содержания в них сократительных структур, но и от концентрации энергетических фосфатов. В свою очередь, силовая выносливость зависит ещё и от способности длительное время поддерживать концентрацию энергетических фосфатов на высоком уровне. Достижение максимального силового результата возможно только в условиях максимальной реализации энергетического потенциала мышцы, но тренировки в таком высокоэнергетическом состоянии не способны вызвать во внутренней среде мышц такие изменения, которые были бы достаточно сильны для запуска дальнейших адаптационных процессов, приводящих к росту сократительных структур. Поэтому после достижения пика формы в начале нового тренировочного цикла нагрузки на мышцы снижают (а иногда практикуют и перерыв в тренировках), что приводит к некоторой деадаптации мышц в энергетической сфере, но не оказывает существенного воздействия на сократительные структуры мышц. Последующее повышение нагрузки вновь оказывает на мышцу необходимое стрессовое воздействие, что, соответственно, вызывает рост сократительных структур мышц. Со временем адаптационные процессы, происходящие в мышцах, опять снижают восприимчивость мышц к нагрузке, получение микротравм блокируется, мышца достигает пика формы, и для достижения дальнейшего прогресса требуется вновь отступить назад, снизив нагрузку. Это грубая схема и она не отражает полную картину происходящих процессов, поэтому к секретам построения тренировочных циклов я вернусь чуть позже, после того как подготовлю базу для понимания еще одного важного фактора, определяющего потребность в циклировании нагрузки.
Вступление
Первую часть данной статьи я посвятил краткому изложению основ физиологии мышечной деятельности, и теперь пришла пора ознакомить читателей с основами классической теории тренировки.
Организм - это саморегулируемая система, стремящаяся к поддержанию постоянства внутренней среды. Физическая нагрузка оказывает выраженное воздействие на внутреннюю среду мышц и организма в целом, смещая многие биохимические показатели от уровня, характерного для состояния покоя, к уровню, соответствующему состоянию деятельности. Степень этих изменений зависит от характера и интенсивности физической нагрузки и индивидуальной реакции на неё организма, отражающей уровень тренированности. Сразу после прекращения нагрузки в организме начинаются процессы, которые стремятся восстановить исходное состояние, соответствующее гомеостазу покоя. В ходе этих процессов закрепляются изменения, позволяющие в дальнейшем минимизировать возмущение внутренней среды при аналогичных нагрузках.
Спортивную тренировку следует рассматривать как процесс направленного приспособления организма (адаптации) к воздействию тренировочных нагрузок.
Различают срочную и долговременную адаптацию. Срочная адаптация - это ответ организма на однократное воздействие тренировочной нагрузки, выражающийся в "аварийном" приспособлении к изменившемуся состоянию своей внутренней среды. Ответ этот сводится, преимущественно, к изменениям в энергетическом обмене и к активации высших нервных центров, ответственных за регуляцию энергетического обмена. Что же касается долговременной адаптации, то она формируется постепенно на основе многократной реализации срочной адаптации путём суммирования следов повторяющихся нагрузок.
В протекании процессов адаптации можно различить специфическую компоненту и общую адаптационную реакцию. Процессы специфической адаптации затрагивают внутриклеточный энергетический и пластический обмен и связанные с ним функции вегетативного обслуживания, которые специфически реагируют на данный вид воздействия сообразно его силе.
Общая адаптационная реакция развивается в ответ на самые разные раздражители (независимо от их природы) в том случае, если сила этих раздражителей превышает некий пороговый уровень. Реализуется общая адаптационная реакция благодаря возбуждению симпато-адреалиновой и гипофизарно-адренокортикальной систем. В результате их активации в крови и тканях повышается содержание катехоламинов и глюкокортикоидов, что способствует мобилизации энергетических и пластических резервов организма. Такая неспецифическая реакция на раздражение была названа "синдром стресса", а раздражители, вызывающие эту реакцию, получили название "стресс-факторы".
Общий адаптационный синдром сам по себе не является основой адаптации к тренировочным нагрузкам, он лишь призван на системном уровне обеспечивать протекание специфических адаптационных реакций, которые и формируют приспособление организма к конкретным видам нагрузки.
Несмотря на различную природу процессов специфической адаптации, можно выделить общие закономерности их протекания. Основу специфической адаптации составляют процессы восстановления растраченных во время мышечной работы энергетических ресурсов, разрушенных структур клеток, смещённого водно-электролитического баланса и др. Наглядно проследить закономерности протекания восстановительных процессов можно на примере восстановления энергетических ресурсов организма, поскольку при физических нагрузках наиболее выраженные изменения обнаруживаются именно в сфере энергетического обмена.
Изменения в энергетическом обмене
Мышечная работа в зависимости от её интенсивности и длительности приводит к снижению уровня креатинфосфата в мышцах, а также к истощению запасов внутримышечного гликогена, гликогена печени и резервов жиров. Интенсивно протекающие после прекращения нагрузки процессы восстановления приводят к тому, что в определённый момент отдыха после работы уровень энергетических веществ начинает превышать исходный "дорабочий" уровень. Это явление получило название "суперкомпенсация" или "сверхвосстановление" (рис. 1).
Рис. 1.
Фаза суперкомпенсации длится не вечно, уровень запасов энергетических веществ постепенно возвращается к норме, испытывая некоторые колебания возле состояния равновесия. Чем больше был расход энергии при работе, тем интенсивнее идёт восстановление и тем значительнее оказывается превышение исходного уровня в фазе суперкомпенсации. Однако это правило применимо лишь до какого-то предела. При истощающих нагрузках, приводящих к накоплению слишком большого количества продуктов распада, скорость восстановительных процессов уменьшается, фаза суперкомпенсации откладывается и оказывается выраженной в меньшей степени.
Похожим образом идёт восстановление не только энергетических, но и пластических ресурсов организма, и даже целых тренируемых функций. Напряжение в ходе физической нагрузки систем, ответственных за реализацию той или иной функции, сначала приводит к снижению функциональных возможностей организма, но затем во время отдыха достигается состояние суперкомпенсации тренируемой функции, длящееся определённое время, а ещё через какое-то время, при отсутствии повторных нагрузок, уровень тренируемой функции вновь снижается, - то есть наступает фаза утраченной суперкомпенсации (рис. 1).
Выработка долговременной адаптации становится возможной только в том случае, если тренировки ведутся по определённым правилам, благодаря чему их эффекты суммируются. Проведение повторных тренировок в фазе утраченной суперкомпенсации (слишком редкие тренировки) (рис. 2) не сможет привести к закреплению тренировочного эффекта, поскольку каждая последующая тренировка проводится после возвращения функциональных возможностей организма к исходному уровню.
Рис. 2.
В свою очередь, слишком частые тренировки, прерывающие стадию восстановления до достижения эффекта суперкомпенсации (рис. 3) приводят к отрицательному взаимодействию тренировочных эффектов и к снижению функциональных возможностей организма.
Рис. 3.
И только проведение повторных тренировок в фазе суперкомпенсации (рис. 4) приводит к положительному взаимодействию тренировочных эффектов, закреплению следов срочной адаптации, росту тренируемой функции и формированию долговременной адаптации.
Рис. 4.
Однако приведённые выше правила не следует воспринимать узко, однолинейно. Требование задавать нагрузку только в стадии суперкомпенсации справедливо лишь в долгосрочной перспективе. В рамках же одного тренировочного микроцикла возможны и серии тренировок в стадии недовосстановления (рис. 5), приводящие к более глубокому истощению тренируемой функции - что может быть использовано затем либо для получения более мощного роста функциональных возможностей в стадии суперкомпенсации, либо для вызванного тактической необходимостью переноса во времени эффекта суперкомпенсации.
Рис. 5.
На первый взгляд может показаться, что составление эффективных тренировочных программ является делом несложным: мол, тут достаточно определить уровень нагрузки, необходимый для достижения максимальной суперкомпенсации той или иной функции, а также время наступления фазы суперкомпенсации - и тогда можно будет задавать повторные нагрузки с необходимой частотой, постоянно получая положительную сумму тренировочных эффектов. Однако на практике данный принцип построения тренировки реализовать в полной мере почти никогда не удаётся.
Всё дело в том, что различные параметры и функции, вносящие свой вклад в общую тренированность (необходимую для того или иного вида спорта), имеют не только разное время восстановления и достижения суперкомпенсации, но также и разную длительность фазы суперкомпенсации. Так, фаза суперкомпенсации уровня креатинфосфата в мышце достигается всего через несколько минут отдыха после нагрузки, приводящей к существенному снижению его уровня. Для достижения же выраженной суперкомпенсации запасов гликогена в мышцах требуется не менее 2-3 суток, и к этому моменту уровень креатинфосфата уже вступает в фазу утраченной суперкомпенсации. В свою очередь, для восстановления структур клеток, разрушенных в ходе тренировок, потребуется ещё больший период времени, в течение которого уровень гликогена в мышцах уже может вернуться к исходному уровню. Так что заявления некоторых "гуру" бодибилдинга о том, что время восстановления мышцы после тренировки должно составлять N часов (дней), без указания на то, о восстановлении какой именно ведущей функции идёт речь, являются, мягко выражаясь, довольно сомнительными. Задать такой период отдыха между тренировками, который позволил бы получать усиление всех тренируемых функций одновременно - дело просто невозможное.
Поэтому в классическом подходе к спортивной тренировке годичный (и даже многолетний) период тренировок разбивают на микро- и макроциклы, в ходе которых ставятся задачи по повышению определённых способностей. Чередование тренировочных занятий в ходе микроциклов осуществляется таким образом, чтобы физические нагрузки, направленные на наращивание определённой двигательной способности, задавались через промежутки времени, обеспечивающие суперкомпенсацию ведущей функции, а нагрузки иной направленности, применяемые в этот период, не оказывали отрицательного влияния на восстановление основной функции.
Однако такой метод срабатывает только при тренировке, так сказать, "взаимонезависимых" функций или параметров. Если же какая-то двигательная способность зависит от развития сразу нескольких функций или параметров, испытывающих напряжение в ходе одного тренировочного занятия и имеющих разное время восстановления, то в течение микроцикла приходиться варьировать интенсивность и объём тренировок, накладывая волны восстановления различных параметров друг на друга таким образом, чтобы получить суперкомпенсацию основных тренируемых функций к моменту завершения микроцикла.
На рисунке 6 представлен простейший вариант построения микроцикла для двух тренируемых функций, имеющих разное время восстановления. В течение микроцикла одна функция испытывает последовательное положительное суммирование тренировочных эффектов, в то время как другая функция последовательно вводится в стадию истощения и достигает суперкомпенсации лишь во время отдыха либо снижения нагрузки к концу микроцикла. Реальная картина тренировок, конечно, куда сложнее, поскольку число тренируемых параметров и функций обычно не ограничивается двумя, а доходит до десятка.
Рис. 6.
Так уж сложилось, что классическая теория тренировки основывается на изучение процессов, приводящих к росту работоспособности мышц и организма в самых различных режимах работы. Дело в том, что основой практически всех видов спорта является именно работоспособность, а потому традиционная цель планируемых адаптационных изменений в организме спортсмена - выход на новый уровень работоспособности. Гипертрофия же мышц в классическом спорте никогда не была целью тренинга и потому воспринимается лишь как побочный продукт развития основных двигательных качеств. Более того, гипертрофия мышц иногда может даже мешать достижению стоящих перед спортсменом целей. А вот посетителей тренажерных залов, за редким исключением, интересует не столько повышение двигательных способностей, сколько именно гипертрофия мышц - хотя, безусловно, увеличение выносливости мышц способствует гипертрофии мышечной ткани. За счёт чего?
Во-первых, за счёт того, что процессы, направленные на улучшение доставки кислорода к мышцам, существенно развивают капиллярную сеть. Во-вторых, за счёт того, что тренировка окислительной активности мышц приводит к значительному росту в саркоплазме мышечных волокон количества и объёма митохондрий - энергетических станций клетки. В-третьих, за счёт того, что суммирующиеся процессы суперкомпенсации внутримышечных запасов гликогена приводят к заметному его накоплению, что, в свою очередь, увеличивает объём саркоплазмы мышечного волокна. К гипертрофии мышц приводит накопление и иных веществ, ответственных за энергообеспечение мышечной деятельности - таких, например, как креатинфосфат - что также увеличивает объём саркоплазмы, и даже не столько за счёт роста объёмов самих этих веществ, сколько за счёт сопутствующего увеличения объёма внутриклеточной жидкости. Таким образом, тренировка работоспособности мышц приводит к гипертрофии мышечных волокон, в первую очередь, за счёт увеличения объёма саркоплазмы.
Однако наибольший вклад в рост объёмов и силы сокращения мышечных волокон вносит гипертрофия именно самих миофибрилл, а все остальные компоненты мышечных клеток призваны лишь обеспечивать их, миофибрилл, сократительную активность. Как размер топливных баков самолёта зависит от мощности, от "аппетита" его турбин, так и объём саркоплазмы мышечного волокна зависит от параметров сократительного аппарата клетки (ну и, конечно, от объёма работы, регулярно выполняемой мышцей).
Поскольку миофибриллы представляют собой белковые нити, увеличение количества и поперечного сечения миофибрилл в мышечном волокне напрямую связано с интенсивностью синтеза белка. То, что тренировка интенсифицирует синтез белка - это сегодня неопровержимый факт. Но вот вопрос: как и почему это происходит?
Как строится белок
Молекула белка представляет из себя цепочку аминокислот, число которых колеблется от нескольких десятков до нескольких десятков тысяч. Всего в природе насчитывается более трёхсот видов аминокислот, но для строительства белка живые существа использует только двадцать две. Свойства белка определяются последовательностью аминокислот в цепочке, а также пространственной конфигурацией самой цепочки (так называемыми "вторичной" и "третичной" структурами белка). Строительство молекул белка происходит как из аминокислот, поступающих в организм с белковой пищей, так и из аминокислот, синтезируемых самим организмом. Упрощённо процесс синтеза белка изображён на рисунке 7.
Рис. 7.
Программы строительства всех белков организма записаны в ДНК ядра клетки и её частичных копиях - РНК - в виде последовательности нуклеотидов. Каждая аминокислота записывается определённой комбинацией трёх нуклеотидов, называемой "кодон". Последовательность кодонов в ДНК и РНК определяет последовательность аминокислот в белке. Последовательность нуклеотидов, которая кодирует один белок, называется "ген". Эта последовательность считывается с ДНК и записывается в матричной РНК (мРНК); процесс этот носит название "транскрипция". мРНК - это как бы кусочек ДНК, способный выходить из ядра в протоплазму, где он закрепляется на рибосомах. Транспортные РНК (тРНК) доставляют к мРНК аминокислоты. Один конец тРНК узнаёт на мРНК соответствующий кодон и прикрепляется к нему. Аминокислота, находящаяся на другом конце тРНК, сцепляется с аминокислотой соседней тРНК; таким образом выстраивается цепочка белка.
Синтез белка - это очень сложный процесс, и интенсивность его зависит от огромного числа факторов. Транскрипция мРНК в ядре клетки начинается под воздействием стероидных гормонов, вырабатываемых железами внутренней секреции и переносимыми к клеткам кровью. Проникнув из крови внутрь клеток, гормоны с помощью белков-рецепторов доставляются в ядра и разблокируют участки цепочек ДНК, ответственные за тот или иной белок, после чего, собственно, транскрипция мРНК и становится возможной. Для запуска транскрипции РНК необходимо также развернуть спираль ДНК, распрямить её, для чего используется фермент РНК-полимераза.
Сильнейшее влияние на синтез белка оказывает гормон роста (СТГ или соматотропин). По химическому составу соматотропин сам является белком, поэтому он не может свободно проникать в клетку (в отличие от стероидных гормонов) - он лишь воздействует на рецепторы, расположенные на поверхности клетки. Механизм действия гомона роста до конца не изучен, но уже точно известно, что он стимулирует деятельность РНК-полимераз и рибосомного аппарата клетки.
Помимо всего прочего, для сборки белка требуется наличие в клетке достаточного количества аминокислот и запасов энергии. Без аминокислот не из чего будет строить белок, а энергия нужна для подпитывания механизма сборки белковой молекулы.
Итак, для успешного синтеза белка требуются, как минимум, следующие условия:
- достаточное количество аминокислот в клетке;
- запас энергии в клетке;
- активность ферментов и факторов транскрипции РНК (РНК-полимераз и др.);
- высокий уровень анаболических гормонов в крови (тестостерона и соматотропина);
- наличие в клетке белков-рецепторов тестостерона.
Теперь осталось лишь ответить на вопрос: каким именно образом тренировка влияет на синтез белка?
К сожалению, я вынужден разочаровать читателя: детально объяснить механизм этого влияния на сегодняшнем уровне развития науки невозможно. Если о том, как происходит регуляция синтеза белка в простейших одноклеточных организмах, в каждой клетке которых идёт строительство всех белков, закодированных в ДНК, учёные имеют достаточно полное представление, то регуляция синтеза белка в многоклеточных организмах, когда теоретически каждая клетка может синтезировать все возможные белки, закодированные в ДНК, но синтезирует лишь тот набор белков, который присущ данному типу клеток, пока, увы, остаётся загадкой. Да, гормоно-рецепторный комплекс разблокирует участок ДНК, в котором закодирован определённый белок, но каким именно путём гормон узнаёт, какой именно ген в данный момент необходим клетке - миозин быстрого волокна или миозин медленного волокна, а может быть, миоглобин? Учёным ещё предстоит пройти долгий путь, прежде чем раскроются все тайны синтеза белка. А как же быть до тех пор?
Сегодня существует несколько гипотез, пытающихся объяснить влияние тренировки на синтез белка в мышце. Но все эти гипотезы можно объединить в два конкурирующих направления: первое - теория накопления; второе - теория разрушения.
Суть теории накопления состоит в том, что во время мышечной деятельности в клетке вырабатываются некие факторы-регуляторы, оказывающие влияние на процессы считывания информации с ДНК. Одни учёные относят к этим факторам повышение кислотности среды в результате мышечной деятельности, влияющее на спирилизацию ДНК. Другие же исследователи относят к факторам-регуляторам свободный креатин: при интенсивной деятельности креатинфосфат, содержащийся в клетке, в целях восполнения энергии передаёт свою фосфатную группу на АДФ, превращаясь в креатин, и именно креатин, по мнению упомянутых исследователей, оказывает регулирующее воздействие на ДНК.
Я нисколько не сомневаюсь в том, что подобные процессы и впрямь должны иметь место в регуляции интенсивности белкового обмена, - ведь, как известно, в случае обездвижения мышцы интенсивность синтеза белка в её клетках снижается, то есть движение уже само по себе есть фактор-регулятор белкового синтеза. Но двигательная активность мышц является, скорее, необходимым фактором, обеспечивающим нормальный метаболизм в мышечной ткани, но не достаточным условием, для обеспечения заметной гипертрофии мышц, поскольку своё регулирующее воздействие такие факторы-регуляторы, как повышение уровня креатина или кислотности среды, в наибольшей степени оказывают во время работы мышц, а синтез белка идёт в основном после прекращения нагрузки во время отдыха, когда концентрация факторов-регуляторов уже возвращается к уровню, характерному для состояния покоя.
Куда более полное, на мой взгляд, представление о механизмах регуляции синтеза белков способна дать теория разрушения, суть которой заключается в следующем.
Как я уже писал выше, организм - это саморегулируемая система, настроенная миллионами лет эволюции на поддержание постоянства внутренней среды. Разрушение внутренних структур организма автоматически запускает процессы, направленные на восстановление утраченного равновесия. Так, разрушение белковых структур клетки в здоровом организме активизирует восстановительные процессы синтеза белка, для протекания которых сразу же создаются все необходимые условия. То, что активность синтеза белка в повреждённой ткани в несколько раз выше, чем в нормальных условиях - это факт. Мало того, интенсивные анаболические процессы не могут затихнуть сразу по завершении восстановления повреждённых структур. То есть процессы синтеза белка, равно как и все прочие процессы в организме, имеют некоторую инерцию, так что их результатом почти всегда бывает некоторый избыточный анаболизм, приводящий к превышению уровня белка в клетке над исходным. Другими словами, здесь тоже происходит уже упоминавшаяся мной при рассказе о восстановлению энергетических ресурсов суперкомпенсация. В этом нет ничего особенного: восстановление белковых структур клетки подчиняется общим законам адаптации.
Обычно роль тренировки в гипертрофии мышц исследователи сводят лишь к интенсификации процессов синтеза РНК в ядрах клеток. Между тем общий объём мышцы зависит от количества в ней мышечных клеток и от количества ядер в этих клетках. Согласно утвердившемуся в среде спортивных физиологов представлению, число мышечных клеток задаётся генетически и не меняется в ходе тренировок, - об этом свидетельствуют большинство экспериментов, проводившихся в данном направлении (Шекман Б.С.). Впрочем, имеется и ряд таких экспериментальных данных, которые заставляют усомниться в приведённом постулате (об этом чуть позже).
Объясняется неизменность количества клеток в мышце тем, что ядра мышечной клетки утрачивают способность к делению (равно как и сама клетка) ещё на этапе эмбрионального развития. Однако, как показывает ряд экспериментов (M.Cabric и N.T.James), в ходе тренировок количество ядер в мышечных клетках всё-таки увеличивается.
Но как такое может происходить - ведь разве ядра мышечных клеток не теряют навсегда способность к делению? Откуда же тогда появляются эти новые ядра?
Ответ на данный вопрос содержится в работах учёных, занимавшихся проблемами регенерации травмированной ткани. Как оказалось, на этапе эмбрионального развития далеко не все клетки эмбриона, из которых развивается затем мышечная ткань, сливаются в мышечные волокна и утрачивают способность к делению. Какая-то часть из них (около 10%) остаётся в оболочке волокон в виде клеток-сателлитов. Клетки-сателлиты сохраняют способность к делению на протяжении всей жизни организма и являются резервом восстановления мышечной ткани. А значит, только клетки-сателлиты способны быть источником новых ядер в волокне.
Как показывают эксперименты (А.В.Володина; Р.П.Женевская; А.А.Климов и Р.К.Данилов; Э.Г.Улумбеков), повреждение мышечных волокон приводит к активации клеток-сателлитов, которые, освободившись из оболочки, вступают в цикл деления, а затем сливаются воедино, восстанавливая повреждённые волокна.
Логично предположить, что к активации клеток-сателлитов после тренировки приводят процессы, аналогичные травмам волокон. Многие атлеты знают на собственном опыте, что интенсивная тренировка, особенно после продолжительного перерыва, отзывается болью в последующие несколько дней отдыха. Боль явно свидетельствует о разрушениях внутренней структуры мышц. Тщательное микроскопирование мышц показывает, что в результате тренировок в ряде мышечных волокон нарушается упорядоченное расположение миофибрилл, распадаются митохондрии, а в крови повышается уровень лейкоцитов, как при травмах или инфекционном воспалении (В.И.Морозов; М.Д.Штерлинг с соавторами). Разрушение внутренней структуры мышечного волокна во время тренировки (или, иными словами, микротравма) приводит к появлению в волокне обрывков белковых молекул, что сразу же активизирует лизосомы, которые "переваривают" с помощью содержащихся в них ферментов подлежащие уничтожению белковые структуры. Если лизосомы не справляются с объёмом повреждений, то примерно через сутки наблюдается пик активности уже более мощных "чистильщиков" - фагоцитов. Фагоциты - это клетки, живущие в межклеточном веществе и крови. Основная их задача - уничтожение повреждённых тканей и чужеродных микроорганизмов. Именно продукты жизнедеятельности фагоцитов и вызывают воспалительные процессы и боль в мышцах примерно через сутки после тренировки. По-видимому, как раз благодаря деятельности лизосом и фагоцитов повреждается оболочка мышечного волокна, и из неё высвобождаются клетки-сателлиты. Освободившись, клетки-сателлиты начинают цикл деления и сливаются с повреждённым волокном, увеличивая в нём количество ядер и, тем самым, повышая его потенциал в плане синтеза белка.
Учитывая все вышеизложенные обстоятельства, я бы не стал полностью исключать возможность высвобождения клеток-сателлитов в межклеточное пространство и слияния их в новые волокна (кстати, такое слияние достоверно наблюдалось при обширных повреждениях мышечной ткани - правда, новые волокна в этом случае образовывались только взамен утраченных, что, естественно, не приводило к общему увеличению числа волокон в мышце).
На мой взгляд, если повреждения мышечного волокна не столь обширны, чтобы привести его к гибели, а клетки-сателлиты тем не менее всё же пошли по пути слияния в новое волокно, то должна иметь место гиперплазия, увеличение числа клеток. Тем более, что есть ряд экспериментов, выбивающихся из общепринятых представлений о невозможности гиперплазии. Так, W.Goneya удалось на 19-20% увеличить количество мышечных волокон в лапах кошек, которых он заставлял тренироваться с прогрессирующей нагрузкой. Мало этого, S.Yamada, N.Buffinger, J.Dimario & R.Strohman (1989) и L.Larson & P.A.Tesch (1986) сравнили пробы мышечной ткани элитных бодибилдеров и контрольной группы людей, обладавших обычной мускулатурой, и этот анализ показал, что поперечное сечение мышечных клеток у элитных бодибилдеров было лишь незначительно больше, чем у представителей контрольной группы - в то время как поперечное сечение самих мышц у представителей обеих групп различалось весьма существенно. То есть бодибилдеры обладали заметно большим количеством волокон по сравнению с контрольной группой - и это может быть объяснено либо гиперплазией волокон, либо же тем, что элитные бодибилдеры все как один имели прямо с рождения аномально большое число аномально тонких волокон (поскольку до тренировок мускулатура у всех элитных бодибилдеров была самых обычных объёмов). Второе объяснение выглядит, безусловно, не очень правдоподобным, поскольку требует слишком уж многих и редких совпадений.
Впрочем, я не стану зацикливаться на вопросе с гиперплазией и, поскольку возможность последней у человека считается недоказанной, буду исходить из того, что рост мышц происходит исключительно по причине гипертрофии уже существующих волокон. Но ведь и одной из причин гипертрофии мышечных волокон тоже является увеличение в них количества клеточных ядер - что по оказываемому эффекту сравнимо с гиперплазией.
Итак, вернёмся к рассмотрению процессов, происходящих в мышце во время восстановления после тренировки. По завершении этапа саморазрушения повреждённых тренировкой структур начинается этап компенсации - восстановления внутренней структуры волокон. Конечно, данный этап не всегда заканчивается суперкомпенсацией. При слишком обширных повреждениях или отсутствии условий для восстановления результат может быть диаметрально противоположным.
Против теории разрушения чаще всего приводят следующее возражение: "Если причиной роста являются микротравмы, то почему же мышца не растёт, когда её бьют палками?" Ответ на данный вопрос можно найти в докторской диссертации А.В.Володиной. Целью этой работы являлось изучение процессов, препятствующих реализации регенерационного потенциала, заложенного в мышечном волокне. Эксперименты показали, что в условиях обширного повреждения волокон, сопровождающегося ишемией (нарушением кровоснабжения) повреждённых тканей, вызывающей дефицит в снабжении волокна кислородом и питательными веществами, одна часть клеток-сателлитов гибнет и поглощается фагоцитами, а другая часть идёт по пути превращения не в мышечные клетки, а в фибробласты (клетки, производящие коллаген). В итоге место повреждения затягивается соединительной тканью, а количество волокон в мышечной ткани снижается по причине частичной их гибели от повреждений.
При микротравмах же волокна (то есть при повреждении одной лишь внутренней структуры мышечной клетки без нарушения её целостности), в отличие от травмы целой мышцы, снабжение волокна кислородом, а также его иннервация не страдают - следовательно, в этом случае нет факторов, приводящих к гибели клеток-сателлитов и целых волокон.
В общем, если объём микротравм, полученных в ходе тренировки, не слишком велик для срыва восстановительных процессов, но достаточен для активации клеток-сателлитов, то в подвергшихся тренировочной нагрузке волокнах увеличивается количество клеточных ядер. Восстановление энергетических ресурсов после тренировки приводит к суперкомпенсации энергетических структур, а лизис разрушенных тренировкой белков увеличивает содержание свободных аминокислот непосредственно в волокнах, что в совокупности создаёт благоприятные условия для интенсификации процессов синтеза белка. При условиях достаточного по времени отдыха, отсутствия новых стрессовых нагрузок, адекватного снабжения мышечных клеток энергией и пластическими ресурсами (аминокислотами) интенсивные процессы восстановления приводят к накоплению в волокнах белковых структур сверх того уровня, который имел место до тренировки - то есть происходит гипертрофия мышц.
Надо отметить, что последовательность протекания фаз общей неспецифической адаптационной реакции (синдрома стресса) такова, что обеспечивает поддержку описанных выше регенерационных процессов на системном уровне. Первая катаболическая фаза стресс-реакции сопровождается выбросом кортикостероидов, что приводит к мобилизации энергетических ресурсов организма и обеспечивает выработку ферментов лизосом и фагоцитов, расщепляющих белок (кортикостероиды являются теми гормонами, которые активируют у клеток гены протеолитических ферментов), что способствует скорейшему очищению волокон от повреждённых структур. В последующей фазе стресс-реакции синтез кортикостероидов сменяется синтезом анаболических гормонов, что обеспечивает на системном уровне компенсаторный анаболизм.
Что такое микротравма?
Остаётся открытым следующий вопрос: что вызывает разрушение внутренней структуры волокна и является, тем самым, стрессом для мышцы? Прежде чем ответить на этот вопрос, придётся вспомнить механизм сокращения мышц, описанный в I части данной статьи.
Учёный и пауэрлифтёр Фредерик Хэтфилд, считающий роль микротравм в тренировочном процессе скорее отрицательной из-за необходимости длительного восстановления, полагает, что причиной микротравм является повреждение миофибрильных нитей во время негативных повторений. Вот как Хэтфилд описывает механизм таких повреждений:
"Так как количество перекрёстных мостиков, старающихся сократить мышцу недостаточно, они буквально "продираются" сквозь мостики соединений нити, стараясь вызвать концентрическое сокращение. Однако сцепиться как следует им не удаётся, они срываются и повреждаются. Эти действия, очень напоминающие протаскивание щетины одной зубной щетки через другую, сопровождаются сильным трением, и мышечные нити разрушаются."
Мне же такая попытка объяснения причин микротравмирования мышечных волокон кажется неудовлетворительной.
Во-первых, микротравмы возникают не только при негативных повторениях, но и при позитивном движении, что легко можно наблюдать на практике, делая, например, становые тяги с полностью исключённой негативной фазой движения.
Во-вторых, использовать термин "трение" для описания взаимодействия молекул – не совсем корректно. Понятие силы трения введено в физике для описания на макроуровне поверхностного взаимодействия тел специально для того, чтобы абстрагироваться от истинной природы "трения": электромагнитного взаимодействия молекул поверхностного слоя, носящего случайный характер. При сокращении же мышц взаимодействие актина и миозина вполне упорядоченно, так что ссылка на «трение», в попытках объяснить причину повреждения сократительных белков, не достаточна, необходимо выявить механизм этого процесса. А сам же механизм, уважаемый мэтр, как видно из цитаты представляет себе не четко и даже принципиально ошибочно. «Плохое сцепление» миозина с актином причиной повреждения миофибрилл быть не может, ведь, как правило, при предельной нагрузке разрушается не то, что плохо закреплено, а как раз то, что закреплено жестко и не имеет возможности «уступить» напряжению. Потому механизм повреждения миофибрильных нитей, должен носить несколько иной характер, и, как мне кажется; мне удалось смоделировать этот механизм в результате более детального изучения биохимических процессов, происходящих при сокращении мышечной клетки.
Для понимания того, как происходит повреждение миофибрильной нити, читателю придётся ещё раз, - причём теперь уже более подробно - ознакомиться с фазами движения миозинового мостика (рис. 8).
Рис. 8. (1 и 3 шарнирные участки, 2-эластичный компонент, 4 – глобулярная головка миозина)
Молекула миозина состоит из лёгких и тяжёлых цепей меромиозина. Тяжёлая цепь меромиозина содержит в себе две глобулярные головки (4) (на рисунках для простоты изображена только одна головка), и обе эти головки через шарнирный участок (3) связаны с эластичным компонентом (2). Лёгкая цепь меромиозина соединена с тяжёлой цепью шарнирным участком (1).
В первой фазе, ещё до сцепления с актином, головка миозинового мостика несёт в себе АТФ. Во второй фазе, под действием фермента АТФазы, локализованного в самой головке миозина, АТФ гидролизуется и расщепляется на АДФ и неорганический фосфат, причём происходит это на не связанном с актином миозине. После чего, благодаря повороту в шарнирном участке 1, миозиновая головка соединяется с актином - что является третьей фазой процесса. После соединения с актином головка миозина проворачивается в шарнирном участке 3, благодаря чему происходит натяжение эластичного компонента и мостик генерирует силу. Для поворота головки и совершения рабочего хода мостика используется энергия, освобождённая при диссоциации продуктов гидролиза АТФ. Основная доля этой энергии выделяется при высвобождении неорганического фосфата (переход из третей фазы в четвёртую), а меньшая часть - при высвобождении АДФ (переход из четвёртой фазы в пятую). В пятой фазе возникает сцепленное или "ригорное" состояние мостика, то есть мостик уже не генерирует движущую силу, но остаётся сцепленным с актином, и вывести его из этого состояния может только молекула АТФ. Поглощая АТФ, головка миозина переходит в шестую фазу, после чего отцепляется от актина, возвращаясь в исходное состояние (первую фазу).
Разбираясь с фазами движения миозинового мостика, я сразу обратил внимание на тот факт, что для отцепления мостика от актина требуется молекула АТФ. При скольжении нитей миозина вдоль актина под действием сил тянущих мостиков (в случае позитивного движения) или под действием внешней силы (в случае негативного движения) сцепленные мостики растягиваются и мешают движению - этим, как я уже писал, и объясняется различие в силе, развиваемой волокном при удлинении и при сокращении, а также при сокращениях с разной скоростью. Понятно, что когда АТФ в мышце содержится в достаточном количестве, все мостики успевают отцепиться вовремя - но что должно происходить при очень сильном снижении концентрации АТФ в мышце? Несомненно, тут должно происходить следующее: молекула АТФ вполне может не успеть отцепить головку миозина до того, как растяжение мостика превысит предел его прочности - и сцепленный мостик тогда, естественно, разорвётся (рис. 9). Разумеется, место разрыва мостика изображено мной достаточно условно, я не могу точно указать, где находится самое слабое звено в цепи.
Рис. 9.
Все, наверное, слышали о состоянии трупного окоченения мышц. Наступает оно именно потому, что в мёртвом организме запасы АТФ не восполняются, и мостики миозина оказываются накрепко сцепленными с актином. Что произойдёт с мышцей трупа, если её насильно растянуть? Понятно, что - разрыв. Так вот нечто подобное должно происходить и с отдельными волокнами живой мышцы при растяжении, если в них произойдет резкое снижение уровня АТФ.
Интересно, что при недостатке АТФ наиболее разрушительным воздействием на мышцы должна обладать негативная фаза движения. Как уже писал, мостик генерирует силу благодаря натяжению эластичного компонента, после проворота головки миозина ("гребка"). В случае позитивного движения скольжение нитей после "гребка" поначалу приводит к ослаблению натяжения эластичного компонента, и только дальнейшее смещение нитей под действием других мостиков может привести к последующему растяжению данного "ригорного" мостика. В случае же негативного движения скольжение нитей под действием внешней силы происходит в сторону, противоположную направлению силы упругости эластичного компонента мостика, поэтому относительное смещение нитей после "гребка" сразу же приводит к ещё большему натяжению эластичного компонента "ригорного" мостика (рис. 10). Таким образом, вероятность вынужденного разрыва актино-миозинового комплекса в условиях низкого уровня АТФ значительно выше в негативной фазе движения.
Проведённый анализ показывает, что причиной микротравм мышц при тренировках, с большой вероятностью, может быть именно снижение уровня АТФ в ряде активно работающих волокон. Тогда становится понятным, почему большинство специалистов возлагают вину за повреждение мышц именно на негативную фазу движения.
Рис. 10.
Некоторые специалисты (например, Мак-Комас) видят причину повреждения мышц при негативном движении в микроразрывах оболочки волокон при её растяжении. На первый взгляд, волокно, а следовательно, и его оболочка, могут быть растянуты лишь настолько, насколько позволяют суставы и связки (естественный ход мышцы). Никакого растяжения оболочки волокна, приводящего к микротравмам, при движении без нагрузки не возникает. Почему же негативное движение под нагрузкой должно приводить к растяжению оболочки мышечных волокон? Мак-Комас приводит в своей книге мнение, что в условиях негативного движения отдельные саркомеры могут проявлять нестабильность и растягиваться быстрее остальных, в результате принимая длину большую, чем они имеют при полном растяжении волокна в нормальных условиях.
Рис. 11
Если проведённый мной анализ поведения актино-миозинового комплекса в условиях низкого уровня АТФ является недостаточным для объяснения разрушительного воздействия негативных повторений, и нестабильность и сверхрастяжение саркомеров действительно наблюдались на практике (из текста Мак-Комаса неясно, зафиксировано ли в эксперименте именно сверхрастяжение саркомеров или оно было привлечено просто для теоретического объяснения наблюдаемого факта повреждения волокон), то что же тогда делает растяжение саркомеров нестабильным?
Примечательно, что микротравмы волокон, а соответственно, и возможная нестабильность саркомеров проявляются не при любом негативном движении, а лишь при достаточно интенсивном и длительном. Смею предположить, что причина нестабильности саркомеров может крыться также в критическом снижении уровня АТФ в мышечных волокнах, приводящем к ригидности (или некоторому замедлению растяжения) части саркомеров. Растяжение волокна до его исходных размеров в этих условиях может привести к сверхрастяжению остальных (неригидных) саркомеров (рис. 11).
Итак, то, что при движении, сопровождающемся недостатком АТФ, нарушается нормальное сокращение-растяжение актино-миозиновых нитей и возникают внутренние напряжения, приводящие к микротравмам волокна, - неоспоримо. Но дабы быть уверенными в том, что микротравмы мышц, возникающие в ходе тренировок, действительно имеют именно ту природу, которую я предложил, необходимо понять, возможно ли в ходе тренировки соответствующее снижения уровня АТФ в мышечных волокнах, а если возможно, то при каких условиях.
Как мне показалось поначалу, приведённые соображения должны служить исчерпывающим объяснением действенности системы Ментцера: работа до "отказа" приводит к истощению запасов АТФ и, соответственно, к разрывам в актино-миозиновом комплексе, что становится стрессом для мышцы и вызывает адаптационную реакцию.
Однако на самом деле данная "отказная" схема генезиса микротравмы весьма далека от реальности: как выяснилось, в большинстве случаев "отказ" наступает вовсе не из-за исчерпания запасов АТФ - эксперименты показывают, что уровень АТФ может оставаться достаточно высоким даже в уставшей мышце.
Усомниться в правильности "отказной" схемы меня заставил ещё и тот факт, что появление боли в мышцах - этого вестника микротравм - не имеет однозначной связи с работой до "отказа". Ведь, с одной стороны, на начальном этапе тренинга боль в мышцах возникает почти при любой более-менее интенсивной работе, то есть независимо от того, был "отказ" или нет. А с другой стороны, регулярные тренировки приводят к тому, что работа даже сверх "отказа" (читинг, "стриптиз" и др.) не вызывает уже никакой посттренировочной боли - боль возвращается только после продолжительного перерыва в тренировках.
Все эти противоречащие первоначально найденному "решению" факты и вынудили меня заняться изучением феномена "отказа".
Что такое "отказ" мышцы
"Отказ" - понятие довольно условное. Это не какое-то особое состояние мышцы, а просто её неспособность развить силу, необходимую для преодоления внешней нагрузки.
Факторы утомления, приводящие к снижению силы мышечного сокращения, принято разделять на центральные и периферические.
Центральное утомление развивается в нейронах коры головного мозга, генерирующих импульс к сокращению, а также в нисходящих путях и двигательных мотонейронах спинного мозга, и выражается в снижении количества активных двигательных мотонейронов и в уменьшении частоты их импульсации. Развитие утомления в двигательных центрах коры головного мозга принято называть "охранительным торможением".
Периферическое утомление проявляется в ухудшении передачи сигнала с аксона на мышечное волокно (утомление в нервно-мышечном синапсе) и в снижении силы сокращения самих волокон, даже в условиях их нормальной активации.
Причиной нарушения передачи сигнала в нервно-мышечном синапсе является накопление в мышце ряда продуктов метаболизма при её двигательной активности (Романовский Д.Ю.). Но даже если сигнал от мотонейрона достигает поверхности мышечных волокон и вызывает возбуждение мембраны волокна, полноценное сокращение волокна ещё не гарантировано, так как накопление метаболитов при высокочастотной стимуляции волокна приводит к нарушению распространения сигнала от поверхности волокна к терминальным цистернам внутренних миофибрилл, в результате чего в глубоко лежащих миофибриллах кальций перестаёт выбрасываться в саркоплазму, и миозиновые мостики не имеют возможности сцепляться с актином и генерировать силу - то есть наблюдается так называемое нарушение сочетания возбуждение-сокращение (Дж. Мак-Комас). Мак-Комас считает нарушение сочетания возбуждение-сокращение ведущим фактором периферического утомления при интенсивных сокращениях.
Но кроме факторов утомления, связанных с нарушениями процессов генерации и распространения нервного импульса, существуют и иные причины, приводящие к снижению силы, развиваемой мышечными волокнами - даже в условиях их полной активации. Как можно видеть из модели скользящих нитей, сила отдельного волокна зависит от количества одновременно тянущих миозиновых мостиков. Биохимических причин снижения силы, развиваемой мостиком в генерирующих силу фазах (III, IV) не существует (во всяком случае, пока об этом ничего не известно), поэтому сила мышечного волокна (при его достаточном возбуждении) может снизиться только по следующим причинам:
1) из-за увеличения времени пребывания мостиков в ригорном (сцепленном, не генерирующем силу) состоянии (фаза V, VI);
2) из-за увеличения времени пребывания мостиков в расцепленном состоянии (фаза I, II).
Время нахождения мостика в ригорном состоянии зависит от того, насколько быстро АТФ вступает в контакт с головкой миозина. Понятно, что это время должно зависеть от концентрации АТФ в мышце. Чем выше концентрация АТФ тем более вероятен контакт молекулы АТФ с миозиновым мостиком и тем меньше время нахождения мостика в ригорном состоянии. А это значит, что сила волокна зависит от концентрации АТФ. То есть при прочих равных условиях волокно с высокой концентрацией АТФ будет сильнее такого же точно волокна, но с меньшей концентрацией АТФ. Как известно, воспроизводство АТФ за счёт креатинфосфата происходит почти мгновенно, поэтому можно с уверенностью утверждать, что концентрация АТФ при работе мышцы зависит от концентрации креатинфосфата.
Итак: чем выше концентрация энергетических фосфатов (АТФ и креатинфосфата) в мышечном волокне, тем выше сила, развиваемая этим волокном.
Концентрация энергетических фосфатов оказывает второе по значимости влияние на силу мышечного волокна (при условии его полной активации) после такого фактора, как количество и поперечное сечение миофибрилл. Это положение имеет прямое практическое подтверждение: атлеты, повышающие уровень содержания креатинфосфата в своих мышцах за счёт приёма креатина в качестве пищевой добавки, отмечают заметную прибавку в силе.
Надо отметить, что зависимость силы волокна от концентрации энергетических фосфатов не является линейной. При высоких концентрациях, когда время ожидания контакта АТФ с головкой миозина становится меньшим или сопоставимым со временем, необходимым для протекания химической реакции, приводящей к отделению головки миозина от актина, повышение концентрации АТФ и креатинфосфата уже мало влияет на скорость переключения мостиков и, соответственно, на силу волокна. Зато низкие концентрации АТФ и креатинфосфата существенно снижают силу волокна, что может служить одной из причин "отказа".
Теперь подошла очередь рассмотреть второй фактор, уменьшающий силу сокращения волокна: увеличение времени пребывания мостиков в разомкнутом состоянии (в фазах I и II). Последнее чаще всего происходит в результате снижения скорости гидролиза АТФ и расщепления её на АДФ и неорганический фосфат. В свою очередь, снижение скорости гидролиза является, как правило, следствием понижения активности АТФазы миозина (фермента, катализирующего реакцию гидролиза АТФ). Что же может понижать активность АТФазы?
Расщепление АТФ и его воспроизводство за счёт креатинфосфата вызывает накопление в мышце ортофосфорной кислоты, гликолиз ведёт к повышению концентрации в саркоплазме молочной кислоты, окисление же, в свою очередь, "отравляет" мышцы угольной кислотой. Активность АТФазы как раз очень сильно зависит от кислотности среды. Как показывают эксперименты, максимум АТФазной активности достигается в среде, близкой к нейтральной (рН=7). При смещении pH среды мышцы в кислую сторону активность АТФазы снижается, а при падении рН мышцы до 5 АТФазная активность близится к нулю (П.Г.Богач с соавторами; Б.Ф.Поглазов). Таким образом, в результате накопления кислых продуктов метаболизма АТФаза миозина постепенно снижает скорость гидролиза АТФ, и миозиновые мостики теряют способность сцепляться с актином - то есть мышца уменьшает силу сокращения, несмотря даже на поступающий от мотонейрона сигнал.
Таким образом, "отказ" мышцы является результатом влияния сразу нескольких факторов утомления, доля каждого из которых в конечном результате определяется интенсивностью и длительностью работы мышцы. При этом снижение концентрации АТФ в мышце, хотя и наблюдается в небольшом диапазоне с 5 ммоль/кг до 3 ммоль/кг (Н.И.Волков), не является доминирующим фактором утомления, и "отказ" мышцы может возникать даже при высоком уровне АТФ. Скажу больше: все механизмы мышечного утомления направлены на прекращение мышечной активности именно до истощения запасов энергии - для предотвращения необратимых последствий для мышц и всего организма.
Но то, что при утомлении не фиксируется кардинальное снижение концентрации АТФ в мышце, ни в коей мере не может быть аргументом в пользу того, что снижение концентрации АТФ невозможно ни при каких условиях. Во-первых, в экспериментах, в которых проводились измерения концентрации АТФ, как правило, фиксировалось среднее значение уровня АТФ по мышце - а это всё равно что средняя температура больных по палате. При определённом количестве АТФ в пробе мышечной ткани концентрация АТФ в отдельных волокнах, а уж тем более в отдельных участках волокон может очень сильно отличаться от среднемышечного показателя. Во-вторых, биопсия (проба) утомлённой мышечной ткани совершалась уже после прекращения движения, а поскольку скорость метаболических процессов крайне высока, то измерения показывали уровень АТФ не в сокращающейся мышце, а в мышце через некоторое время (пусть и весьма короткое по человеческим меркам) после прекращения работы. В-третьих (и это самое главное), практически все биохимические эксперименты по измерению уровня АТФ традиционно проводились на мышцах, утомлённых на велотренажере, беговой дорожке и аналогичных лабораторных установках, между тем как микротравмы мышц появляются после нагрузки такого рода весьма редко - а это значит, что существенное снижение уровня АТФ в подобных упражнениях вряд ли происходит.
Таким образом, относительное постоянство средней концентрации АТФ в мышце, обнаруживаемое в экспериментах, вовсе не исключает возможность локального временного снижения уровня АТФ в отдельных саркомерах. Для ответа на вопрос, при каких условиях проявление такой нестабильности в концентрации АТФ наиболее вероятно, следует обратиться к рассмотрению последовательности активации метаболических процессов в мышцах.
Ещё раз об энергетике
Резкий переход к интенсивной мышечной деятельности из состояния покоя требует столь же резкого увеличения скорости производства энергии. Для достижения максимальной мощности основных источников воспроизводства энергии (гликолиза в быстрых волокнах и окисления в медленных) требуется определённое время. Так, скорость воспроизводства АТФ за счёт гликолиза достигает своего максимума только через 20-30 секунд после начала интенсивной работы. Хотя, по некоторым данным, может происходить и более быстрая активация гликолиза (до 5 секунд), а столь медленное его разворачивание в обычных условиях связано с тем, что гликолиз не получает достаточных стимулов для развёртывания, пока сохраняется высокий уровень креатинфосфата в мышцах. Для достижения же максимальной скорости окислительного процесса требуется ещё больше времени, и связано это, в основном, с необходимостью оптимизации процессов доставки кислорода. Таким образом, скорость окисления становится максимальной лишь через 1-2 минуты после начала работы мышц. Между тем мышца развивает максимальную мощность с первых же секунд после поступления сигнала к сокращению. Причём мощность оного сокращения такова, что гликолиз вкупе с окислением (даже при условии максимальной активации данных источников) не в состоянии обеспечить скорость воспроизводства АТФ, необходимую для поддержания этой наивысшей мощности.
Приведение в соответствие скоростей расхода и воспроизводства АТФ во время работы мышцы идёт сразу по двум направлениям. Во-первых, постепенная активизация гликолиза и окисления увеличивает количество АТФ, синтезируемого в единицу времени за счёт этих источников. Во-вторых, накопление продуктов метаболизма в результате интенсивной мышечной деятельности приводит к развитию мышечного утомления и снижению силы сокращения и, соответственно, скорости расхода энергии. Благодаря этим двум процессам скорости расхода и воспроизводства АТФ выравниваются, и в дальнейшем работа идёт уже с постепенно снижающейся мощностью, но зато с сохранением равновесия между количеством потребляемого и синтезируемого АТФ. Таким образом, обеспечивается стабильность уровня АТФ в мышце и "отказ" наступает не вследствие истощения запасов АТФ, а из-за снижения сократительной способности мышц в результате развития описанных выше процессов утомления.
До выравнивания скоростей расхода и воспроизводства энергии дефицит АТФ восполняется за счёт имеющегося в мышце креатинфосфата. То есть креатинфосфат играет роль буфера, сглаживающего разницу в скоростях воспроизводства и потребления АТФ при резко возрастающих нагрузках и обеспечивающего постоянство концентрации АТФ. В обычной жизни мы редко используем свои мышцы на пределе их энергетических возможностей, поэтому они вполне успешно обходятся небольшим запасом креатинфосфата и ферментов, обеспечивающих протекание реакций гликолиза и окисления. Но если дать нагрузку, значительно превышающую привычную, то запас креатинфосфата в наиболее активно работающих волокнах очень быстро иссякнет - задолго до того момента, когда скорости потребления и производства АТФ за счёт основных, более ёмких источников придут в равновесие.
Таким образом, при низком уровне креатинфосфата, слишком интенсивном расходе энергии и неадекватной скорости её воспроизводства и становится возможным падение уровня АТФ ниже критического (обеспечивающего своевременное отцепление головок миозина от актина) - причём не только в отдельных саркомерах, но также и в целых волокнах. В этих условиях продолжение сокращения миофибрилл под действием активных мостиков (при позитивном движении) либо их, миофибрилл, растяжение под действием внешней силы (при негативном движение), как я показал чуть выше, должно приводить к разрушению отдельных цепей миозина и даже целых волокон.
Итак, вот он, главный секрет тренировочного стресса: микротравмы мышечного волокна возникают при условии критического понижения в нём запасов креатинфосфата.
Именно этим и объясняется тот факт, что эффект наиболее разрушительного воздействия на быстрые волокна достигается при интенсивной работе длительностью от семи до тридцати секунд. Если нагрузка позволяет поддерживать сокращение мышц дольше тридцати секунд, то расход энергии в относительно тренированной мышце, скорее всего, будет недостаточно интенсивным для того, чтобы концентрация АТФ и креатинфосфата упала ниже критического уровня. В свою очередь, когда нагрузка бывает велика настолько, что работа может продлиться не дольше нескольких секунд (1-2 повторения), имеет место совсем иная картина. Скорость расхода энергии в этом случае оказывается очень высока, но "отказ", вызываемый уже самым незначительным уменьшением силы волокон, происходит ещё до момента исчерпания запасов креатинфосфата - и стрессовая ситуация, тем самым, просто не успевает сложиться.
Понятно, что при максимально интенсивном режиме работы мышц добиться микротравм в окислительных (медленных) волокнах совершенно невозможно - ведь скорость расхода АТФ в медленных волокнах значительно ниже, чем в быстрых, поэтому запасы креатинфосфата истощаются слишком плавно. Получение микротравм в медленных волокнах было бы, пожалуй, практически нереальным, если бы для активации окислительных процессов требовалось столько же времени, сколько его требуется для активизации гликолиза. Однако, как я упоминал ранее, максимум выработки АТФ за счёт окисления достигается через 1-2 минуты работы, поэтому есть шанс добиться микротравм даже и в медленных волокнах - нужно только успеть получить дефицит креатинфосфата, а затем и АТФ в результате интенсивной работы в течении 1-2 минут до того как выработка АТФ в медленных волокнах достигнет максимальных значений.
То, что окислительные волокна энергетически более устойчивы и меньше подвержены микротравмам, на мой взгляд, и является объяснением того фиксируемого большинством спортивных исследователей факта, что гипертрофия мышц реализуется в основном благодаря гипертрофии быстрых волокон.
Предложенная мною модель возникновения микротравм неплохо согласуется ещё с одним физиологически важным явлением, известным каждому спортсмену, но так до сих пор и не получившему сколько-нибудь приемлемого объяснения: посттренировочная боль особенно сильна после первых занятий и практически полностью исчезает при регулярных тренировках - но появляется вновь в случае длительного перерыва в тренировочных нагрузках. Последнее явление с позиции приведённой выше модели объясняется очень просто: реакцией организма на тренировку, помимо усиления синтеза белка, является также накопление в мышце креатинфосфата и повышение концентрации и активности ферментов гликолиза и окисления. Соответственно, добиться исчерпания возросших запасов креатинфосфата до выравнивания скоростей расхода и восстановления АТФ за счёт основных источников энергии становится сначала всё труднее, а затем уже и просто невозможно, поскольку сокращение мышц становится энергетически всё более и более устойчивым.
А вот и ещё один очевидный вывод: накопление креатинфосфата и рост мощности гликолиза и окисления в результате тренировок, с одной стороны, повышают силу мышц и способствуют росту их работоспособности, но, с другой стороны, препятствуют созданию стрессовых ситуаций и снижают воздействие тренировки на мышцу, замедляя тем самым дальнейшие адаптационные реакции.
Явление постепенного "привыкания" мышц к нагрузке уже давно известно специалистам бодибилдинга под названием "тренировочное плато". Но вот сами биохимические причины процессов, приводящих к снижению восприимчивости мышц к тренировке, были неизвестны. Поэтому для выхода из тренировочного плато специалисты чаще всего советовали сменить режим работы, заменить выполняемые упражнения, изменить тренировочный сплит либо увеличить объём нагрузки, чтобы как-то по-новому воздействовать на мышцу и добиться от неё ответной реакции.
Между тем для того, чтобы достигнуть снижения концентрации АТФ в условиях накопления в мышце всё большого и большего количества креатинфосфата и роста её энергообменных возможностей, необходимо повышать скорость расхода энергии - для чего в распоряжении атлета имеется не так уж и много способов. Один из них - повышение веса снаряда. Однако постоянное увеличение веса снаряда с целью интенсифицировать нагрузку приводит к тому, что количество повторений в упражнении опускается ниже 4-х, что, как я отмечал выше, не может оказать на мышцу необходимого воздействия.
Увеличение же объёма работы за счёт роста количества упражнений и подходов не всегда оказывается эффективным - ведь если интенсивность расхода энергии недостаточно высока для исчерпания накопленного в мышце креатинфосфата до выравнивания скоростей расхода и синтеза АТФ и стрессовая ситуация не наступает в первом же подходе, то последующие подходы, скорость расхода энергии в которых меньше, чем в первом подходе, ввиду остаточного накопления продуктов метаболизма, тем более не дадут нужного эффекта. (Напоминаю, что уровень креатинфосфата в мышце восстанавливается в течение нескольких минут, в то время как молочная кислота, один из главных метаболитов утомления, полностью выводится из мышцы лишь через несколько часов после тренировки.) Таким образом, по мере приспособления мышц к нагрузкам тренировка из стрессового фактора превращается в обычную работу. То есть теперь спортсмен может тренироваться хоть каждый день не испытывая особой перетренированности, поскольку для восстановления мышц ему оказывается достаточным всего лишь одного-двух дней отдыха - именно потому, что привычная тренировка не вызывает разрушения волокон.
Есть ли, однако, смысл в подобного рода тренировках? Безусловно, есть: ведь при постепенном наращивании объёма работы будет расти, например, объём саркоплазмы волокон - за счёт накопления энергетических веществ. Однако подобный рост мышц далеко не беспределен. Без увеличения количества и объёма миофибрилл, а особенно количества клеточных ядер в волокнах (кстати, не стоит исключать тут и возможность увеличения количества самих волокон), добиться значительной гипертрофии мышц просто невозможно.
Как же быть, неужели это тупик?
Похоже, одно из решений проблемы в рамках бодибилдинга найдено Майком Ментцером, хотя в поисках этого решения он исходил из не вполне верных посылок.
Наблюдая за своими учениками, Ментцер заметил, что при принятой в бодибилдинге частоте тренировок (2-3 тренировки в неделю на одну группу мышц) первоначальный прогресс очень быстро прекращается и наступает застой. Полагая, что причина всего этого кроется в перетренированности - то есть срыве восстановительных способностей организма - Ментцер начал экспериментировать с уменьшением объёма нагрузок и увеличением времени отдыха. Итогом его экспериментов стал знаменитый "Супертренинг" - тренировки одной группы мышц не чаще, чем раз в одну-две недели в одном подходе. При таких тренировках прогресс, по утверждению Ментцера, идёт непрерывно до полного исчерпания потенциала атлета. С "классической" точки зрения на тренировочный процесс, при столь редких и малообъёмных тренировках сколько-нибудь заметный прогресс вообще невозможен.
Так в чем же секрет "Супертренинга"?
Эксперименты над лабораторными животными (А.Ф.Краснова, 1960) показали, что после прекращения тренировок концентрация креатинфосфата, гликогена и ферментов, ускоряющих реакции производства энергии, возвращается к дотренировочному уровню уже через 1-3 недели отдыха, но вот содержание сократительных белков в мышечном волокне остаётся на достигнутом тренировкой уровне ещё 30-40 дней после прекращения тренировок. Таким образом, структурный след адаптационных реакций, проявляющийся в виде накопления сократительных белков мышц, оказывается достаточно стойким, а так называемая "потеря формы" при перерыве в тренировках в краткосрочной перспективе является следствием снижения энергетического потенциала мышцы. Соответственно, рекомендуемый Ментцером отдых между тренировками одной мышцы (1-2 недели) не может привести к деадаптации сократительных структур мышц, чего как огня боятся спортсмены. В то же время такой длительный перерыв в тренировках не создаёт условий для закрепления возникающих в ходе отдельных тренировок адаптационных изменений в энергетике мышц. Тем самым избирательно делается акцент на саму важную для бодибилдера адаптационную реакцию - накопление сократительных структур, и искусственно сдерживаются другие адаптационные процессы, приводящие к снижению восприимчивости мышц к нагрузке.
Итак, оказывается, столь длительный перерыв между тренировками в "Супертренинге" необходим не только для обеспечения максимально полного восстановления мышц после нагрузки, как полагал Ментцер, но и для предотвращения излишней адаптации мышц, что обеспечивает регулярное создание стрессовых ситуаций. По степени воздействия на мышцу каждая последующая тренировка в "Супертренинге" Ментцера практически равносильна первой.
В своей книге Ментцер утверждает, что атлет, несколько лет интенсивно тренировавшийся 4-5 раз в неделю, сможет получить эффект от его системы тренировок только после не менее чем месячного отдыха. Столь продолжительный перерыв в тренировках, по моему мнению, как раз и необходим для понижения "тренированности" мышц. Сам же Ментцер считал, что длительный отдых необходим исключительно для восстановления организма, а причина остановки в росте массы кроется в якобы хронической "перетренированности" спортсменов, занимающихся по классическим методикам.
Но главной ошибкой Ментцера является не смешение понятий тренированности и перетренированности, а отрицание какого-либо иного пути в тренировках, кроме его собственного. Другой путь, более сложный в понимании и применении, как это ни странно, известен уже достаточно давно - это циклирование нагрузки и периодизация.
В тяжёлой атлетике, пауэрлифтинге и ряде других силовых видов спорта невозможность постоянного непрерывного прогресса является неопровержимым фактом. Опытным путём установлено, что для того, чтобы сдвинуться с мёртвой точки, необходимо отступить назад, снизить нагрузку и затем начать новое наступление на предельный вес. При таком подходе спортсмены могут позволить себе тренироваться до шести раз в неделю и не испытывают никакой перетренированности (которая, по мнению Ментцера, неминуемо должна наступить), а наоборот, добиваются нового, более высокого результата.
Как же в рамках предложенной мной теории объясняется необходимость циклирования нагрузки?
Как отмечалось во второй части, сила мышц зависит не только от содержания в них сократительных структур, но и от концентрации энергетических фосфатов. В свою очередь, силовая выносливость зависит ещё и от способности длительное время поддерживать концентрацию энергетических фосфатов на высоком уровне. Достижение максимального силового результата возможно только в условиях максимальной реализации энергетического потенциала мышцы, но тренировки в таком высокоэнергетическом состоянии не способны вызвать во внутренней среде мышц такие изменения, которые были бы достаточно сильны для запуска дальнейших адаптационных процессов, приводящих к росту сократительных структур. Поэтому после достижения пика формы в начале нового тренировочного цикла нагрузки на мышцы снижают (а иногда практикуют и перерыв в тренировках), что приводит к некоторой деадаптации мышц в энергетической сфере, но не оказывает существенного воздействия на сократительные структуры мышц. Последующее повышение нагрузки вновь оказывает на мышцу необходимое стрессовое воздействие, что, соответственно, вызывает рост сократительных структур мышц. Со временем адаптационные процессы, происходящие в мышцах, опять снижают восприимчивость мышц к нагрузке, получение микротравм блокируется, мышца достигает пика формы, и для достижения дальнейшего прогресса требуется вновь отступить назад, снизив нагрузку. Это грубая схема и она не отражает полную картину происходящих процессов, поэтому к секретам построения тренировочных циклов я вернусь чуть позже, после того как подготовлю базу для понимания еще одного важного фактора, определяющего потребность в циклировании нагрузки.
l
lifter
Часть III.
Общие правила построения тренировочного процесса
До сего момента я рассматривал тренировку, главным образом, с точки зрения ее влияния на гипертрофию сократительных структур мышц. Но, наиболее полное развитие мышечных объемов и силового потенциала спортсмена может обеспечить лишь рост всех основных компонент мышечного волокна и развитие всех основных двигательных функций. Поэтому, прежде чем приступить к рассмотрению правил построения таких многоцелевых тренировок следует систематизировать тренировочные цели, а затем определить основные функции, развитие которых может привести к достижению поставленных целей.
В зависимости от специализации спортсмена в качестве основной цели тренинга можно выделить развитие следующих качеств мышц:
- сила, развиваемая мышцами в специализированных движениях (пауэрлифтинг, тяжелая атлетика);
- силовая выносливость (гиревой спорт, борьба, спринтерский бег);
- мышечные объемы (бодибилдинг).
Сила
Давайте в первую очередь разберемся, от чего зависит сила мышц, а вернее ее наглядное практическое проявление - результат, достигаемый спортсменом в специализированных движениях, например в соревновательных движениях тяжелой атлетики или пауэрлифтинга. Проявление скоростно-силовых качеств мышц, в упомянутых видах спорта, несколько отличается. Цель пауэрлифтера поднять максимальный вес независимо от скорости движения. В тяжелой атлетике соревновательные движения технически более сложные, и конечный результат зависит от того, будет ли штанга в нужной точке траектории иметь нужную скорость движения. Масса снаряда в тяжелой атлетике относительно ниже, чем в пауэрлифтинге, однако снаряд приходится разгонять до значительно больших скоростей. Но при внимательном рассмотрении различия оказываются не столь существенными. Дело в том, что сила, которую спортсмену необходимо прикладывать к снаряду для его равномерного подъема (вернее проекция силы на вертикальную ось) равна произведению массы снаряда на ускорение свободного падения, вспомните второй закон Ньютона F=mg (напоминаю, что буквами F принято обозначать силу, m -массу, а g- ускорение свободного падения). Конечно, в момент отрыва, для придания снаряду начальной скорости, требуется приложить несколько большую силу, так как снаряду необходимо сообщить начальное ускорение. Сила, которую необходимо в этом случае приложить к снаряду, равна F=m(g+a), где а - ускорение, сообщаемое снаряду. Различие между пауэрлифтингом и тяжелой атлетикой как раз и проявляется в величине этого ускорения. В пауэрлифтинге штанге необходимо сообщить лишь минимальное ускорение, достаточное для ее срыва и придания минимальной скорости, достаточной для прохождения мертвой точки. В тяжелой же атлетике требование к развиваемому ускорению значительно выше, чем в пауэрлифтинге. Но и в том и в другом случае результат зависит от силы, прикладываемой к снаряду. Чем выше сила, тем больше масса штанги, которой пауэрлифтер может придать минимально необходимое ускорение, и тем больше ускорение, которое тяжелоатлет может придать штанге с определенной массой. Таким образом, в обоих видах спорта результат зависит от силы, прикладываемой к снаряду, а, соответственно, от силы, развиваемой мышцами. Здесь следует иметь в виду и еще одно различие между пауэрлифтингом и тяжелой атлетикой - сила мышц, зависит от скорости их сокращения, вспомните соотношение Хилла, упоминаемое мной в первой части, - чем выше скорость сокращения мышцы, тем меньшую силу она способна развить. В тяжелой атлетике мышцы вынуждены сокращаться при несколько больших скоростях, чем в пауэрлифтинге, поэтому и развиваемая ими сила несколько меньше.
Результат в соревновательных движениях зависит не только от силы мышц, но и от оптимальной траектории движения, своевременного и эффективного приложения силы к снаряду, то есть от техники выполнения упражнения. Я не буду подробно останавливаться на этом вопросе, так как не считаю себя в нем достаточно компетентным, тем более, что за годы развития таких видов спорта, как тяжелая атлетика и пауэрлифтинг, накоплен богатый методический материал по постановке техники соревновательных движений. Скажу только, что основой освоения техники выполнения упражнения является наработка определенного количества движений, что приводит к закреплению в центральной нервной системе (ЦНС) двигательного стереотипа. Отчасти, видимо, поэтому одним из существенных критериев в планировании тренировочных нагрузок на начальном этапе тренинга, в классической спортивной школе, является КПШ - количество подъёмов штанги.
Давайте лучше рассмотрим, от чего зависит собственно сила, развиваемая мышцами, и какие методы тренировки могут повлиять на способность мышц генерировать силу. Как вы помните из первой части, сократительным элементом волокна является миофибрильная нить. Силу, развиваемую миофибриллой, генерируют боковые выступы молекулы миозина, называемые мостиками, совершая гребковые движения. Обращаю ваше внимание на тот факт, что миофибрилла, это цепочка последовательно соединенных саркомеров, а крепость цепи, как известно, зависит от крепости самого слабого ее звена. Сила миофибриллы как целого не может быть больше силы ее части - отдельного саркомера, то есть каждый саркомер должен развивать одинаковую силу, и эта сила равна силе всей миофибриллы. Сила, развиваемая саркомером, зависит от его длины, чем длиннее саркомер, тем большим количеством миозиновых мостиков он располагает и тем сильнее его сокращение. Мышечные волокна разных мышц и даже одних и тех же мышц, но у различных индивидов имеют разные длины саркомеров, и, соответственно, разную способность к генерации силы. Однако длина саркомера задается генетически и не поддается тренировке, поэтому в дальнейшем влияние длины саркомера на силу я даже не буду рассматривать.
Итак, из вышесказанного можно сделать вывод, что сила мышцы зависит не от длины миофибрильных нитей (от этого зависит амплитуда сокращения мышцы), а от количества сократительных структур в поперечном сечении мышцы. А вот этот параметр как раз и поддается развитию.
Основные принципы тренировки, нацеленной на рост сократительных структур мышц, я рассматривал во второй части. Напомню основную фабулу:
Высокоинтенсивные тренировки, приводящие к сокращению мышц в условиях недостатка макроэнергетических фосфатов, разрушают сократительные белки мышечных волокон. Микротравмы мышечных волокон запускают восстановительные процессы, приводящие к интенсификации синтеза белка и делению клеток-сателлитов, приводящих к увеличению клеточных ядер в мышечных волокнах, что все в месте, при условии достаточно длительного и полноценного восстановления, приводит к увеличению сократительных структур в мышце.
Рассмотрим, какова же должна быть методика тренировки, максимальным образом способствующая гипертрофии сократительных структур мышц.
Для начала, исследуем вопрос об оптимальном типе и темпе движения. Каким же должно быть движение? Позитивным? Негативным? Статическим? А каков должен быть темп движения? Взрывным? Подчёркнуто медленным? Среди методистов тренинга по данному вопросу не существует единства мнений. И это не удивительно. Если исходить из того, что цель тренинга - получение микротравм при напряжении мышцы в условиях недостатка макроэнергетических фосфатов, то становится ясно, что достижение этой цели, в той или иной мере, возможно любым из способов, главное расходовать энергию. При этом следует иметь в виду то, что по мере повышения тренированности мышц добиваться стрессовой для мышц ситуации становится всё труднее, поэтому по мере роста тренированности спортсмена относительная скорость расхода энергии в мышце должна возрастать, то есть должна возрастать средняя мощность подхода. Добиться увеличения мощности можно не только благодаря увеличению веса снаряда, но и благодаря изменению характера движения.
Подъем снаряда должен быть максимально быстрым для данного веса, так как, во-первых, от скорости подъема зависит развиваемая мощность (то есть расход энергии в единицу времени), а во-вторых, только максимально быстрый для данного веса подъем означает, что к снаряду прикладывается максимальное усилие (то есть мышцы максимально напряжены). Иногда может показаться, что медленное движение более сильно нагружает мышцы, так как при искусственно замедленном подъеме справится с весом труднее, чем при работе во «взрывном» стиле. Но на деле медленный подъем означает, что в работу включено не максимально возможное число двигательных единиц, а те, что включены, работают не с полной отдачей.
Что касается обратной фазы движения (опускание веса), то на начальном этапе тренинга для получения микротравм достаточно будет и свободного опускания снаряда, при этом расход энергии будет наблюдаться только при подъёме, а во время обратного движения и отдыха в нижней и верхней точке траектории запасы АТФ будут восполняться. Активное сопротивление мышц растяжению во время негативной фазы движения приведёт к тому, что энергия будет расходоваться не только на подъём снаряда, но и на его опускание. Кроме того, постоянное напряжение мышцы, возникающее благодаря активности мышцы и во время негативной фазы, блокирует кровоснабжение и доставку кислорода, а значит и снижает интенсивность окислительных процессов в мышце, что может еще более спровоцировать дефицит энергии. Не следует забывать и то, что, как я показал во второй части статьи, негативная фаза движения должна обладать наиболее сильным разрушающим воздействием по самому своему характеру. Таким образом, при стремлении усилить воздействие тренировки на мышцу следует практиковать быстрый взрывной подъем снаряда и его медленное подконтрольное опускание (кстати, именно такой стиль выполнения упражнения практиковал Дориан Ятс). Если же и этого оказывается недостаточно для микротравмирования мышц, то можно значительно повысить вес снаряда и поднимать его с помощью партнера, а опускать самостоятельно (негативные повторения), в этом случае разрушительное воздействие тренировки на мышечные волокна станет еще более выраженным. И так, если мышцы новичка будут изнывать от боли после тренировки практически с любой нагрузкой, например, при использовании простого позитивного движения, то опытные регулярно тренирующиеся атлеты могут получить микротравмы только при акцентировании движения на негативной фазе, или даже практикуя исключительно негативные повторения с большими весами. Данный факт и позволил распространиться заблуждению, что микротравмы волокон возникают исключительно во время негативной фазы движения.
А вот другой извечный вопрос: каково должно быть количество повторений в упражнении?
Должен заметить, что вопрос этот принципиально некорректен, поскольку определяющим для процесса тренировки является вовсе не количество повторений, а время напряжения мышц, или по-другому, время нахождения под нагрузкой. Вероятность возникновение микротравм существенно возрастает после снижения концентрации креатинфосфата вполовину от исходного уровня, что в быстрых волокнах наступает примерно на седьмой-десятой секундах максимально интенсивной работы. В то же время вероятность получения микротравм снижается после достижения максимальной скорости воспроизводства АТФ за счёт гликолиза и снижения АТФ-азной активности мышц по причине накопления кислых продуктов метаболизма. Последнее наблюдается примерно через тридцать-сорок секунд после начала работы. Таким образом, для достижения требуемого эффекта в быстрых волокнах подход должен длиться не менее семи и не более сорока секунд.
Так сколько же конкретно должна длится нагрузка? Понятно, что чем интенсивнее нагрузка, тем выше скорость расхода энергии, но тем меньше возможная длительность такой нагрузки, в свою очередь менее интенсивная нагрузка может продлиться дольше, но развиваемая при этом скорость расхода энергии ниже, чем в первом случае. По-видимому, оптимальная длительность нагрузки находится где-то посередине указанного интервала и составляет двадцать-тридцать секунд.
Почему же разные мышцы даже у одного человека лучше реагируют на разное количество повторений? Дело в том, что различные движения длятся разное время. Чем больше амплитуда движения, тем дольше длится повторение и тем меньше их укладывается в требуемое время. Так, за двадцать-тридцать секунд работы в таких движениях, как приседания и становая тяга, можно сделать шесть-восемь повторений, в жимовых упражнениях и при работе на бицепс, трицепс - восемь-десять повторений, а вот уже в упражнениях на голень и предплечья количество повторений может составить десять-пятнадцать. Таким образом, никакого принципиального различия в тренировке бицепса, четырёхглавой мышцы бедра или голени на самом деле не существует - во всех случаях, несмотря на разное число повторений, нагрузка длится примерно одинаковое время.
Но нередко рекомендуемое практиками количество повторений выходит за определённые выше рамки и достигает двадцати-тридцати повторений даже в таких упражнениях, как приседания и становая тяга. Дело в том, что мышцы состоят не только из быстрых, но и из медленных волокон, и тренировке медленных волокон тоже полезно уделять внимание. Как я уже писал ранее, скорость расхода АТФ в медленных волокнах значительно ниже, чем в быстрых, поэтому сокращение медленных волокон энергетически более устойчиво. Создать временный дефицит АТФ, необходимый для получения микроразрывов в медленных волокнах, за промежуток времени в пятнадцать-двадцать секунд практически невозможно. Но так как интенсивность гликолиза в окислительных волокнах невысока, а максимальная скорость производства АТФ окислительным путём может быть достигнута только через одну-две минуты после начала работы, причём напряжение мышцы при нагрузке свыше 30% от максимальной практически останавливает кровообращение, что затрудняет доставку кислорода и получение энергии окислительным путём, то при предельно интенсивной работе длительностью шестьдесят-девяносто секунд и более можно ожидать достижения дефицита АТФ и микротравм в медленных волокнах.
Кстати, вклад медленных волокон в общую гипертрофию мышц зависит от их доли в композиции мышц. По-видимому, утверждения о том, что большое количество повторений лучше воздействует на определённые мышцы, исходят от людей, у которых в данных мышцах преобладают медленные волокна. В общем же случае, следует признать, что максимального развития мышц можно добиться, только уделяя внимание волокнам всех типов.
Следующий очень важный вопрос: необходимо ли работать до отказа, как это утверждает, например, Ментцер, и есть ли какое-то особое магическое значение у последнего отказного повторения?
И так, если исходить из сделанного мной предположения, что микротравмы миофибрилл возникают, когда после нескольких секунд работы существенно снижается уровень креатинфосфата в активно используемых мышечных волокнах, то происходит это, как правило, задолго до отказа мышцы как целого. Таким образом, микротравмы мышц напрямую с отказом не связаны, но, понятно, что чем дольше продлится нагрузка на мышцы в низкоэнергетическом состоянии (чем ближе подход подойдет к отказу), тем больше микротравм получит мышца. Если изначально цель тренировки (оптимальное количество микротравм) будет достигнута при работе необходимой длительности (см. выше) с относительно небольшим весом (и, соответственно, без достижения отказа), то по мере повышения тренированности мышц нужно повышать и вес снаряда, и, в конечном счёте, всё сведётся к тому, что отказ будет неминуемо наступать в требуемом диапазоне повторений. Таким образом, при стремлении усилить воздействие тренировки на мышцы, конечно же, необходимо стремиться к отказу. Работа до отказа говорит о том, что вы максимально выложились в данном подходе, но не следует полагать, что все дело именно в последнем «отказном» повторении, и не выполни вы его - тренировка прошла зря, как это, фактически, утверждает Майк Ментцер. Поэтому в потенциально травмоопастных упражнениях, требующих высокой концентрации внимания и соблюдения чёткой техники выполнения движения - таких как становая тяга или приседания со штангой на плечах, доводить себя до действительно «отказного» повторения, наверное, все-таки, не стоит. Говоря об «отказе» следует учитывать и еще один важный фактор: отказное повторение - это всегда максимальное нервное напряжение, попытка мозга сгенерировать максимально мощный нервный импульс для развития максимального усилия, особая роль «отказного» может проявляться не в воздействии на мышцы а в воздействии именно на центральную нервную систему, но об этом я буду говорить позже.
А сейчас настало время рассмотреть вопрос об отдыхе между подходами и количестве самих подходов.
Для того, чтобы определить оптимальное количество повторений и отдых между ними, следует разобраться, для чего вообще используется интервальный метод тренировок - метод чередования нагрузки и отдыха.
Нагрузки, повторяющиеся через определённый интервал отдыха, используются для более выраженного воздействия на тренируемую функцию. В зависимости от особенностей происходящих в организме процессов можно выделить два принципа взаимодействия нагрузок в ходе одного тренировочного занятия.
В самом простом случае эффект, достигаемый в каждом подходе, не зависит от предшествующей нагрузки. Время отдыха между подходами в этом случае строго не регламентировано, оно должно быть лишь достаточным для восстановления сил, дабы иметь возможность повторить последующий подход на требуемом уровне мощности. Общий эффект от такой тренировки является простой суммой тренировочных эффектов, достигнутых в ходе отдельных подходов. Примером может служить тренировка, направленная на развитие гликолитической ёмкости мышц, срочная тактическая цель которой - существенное исчерпание запасов гликогена в мышце, дабы спровоцировать его сверхвосстановление в период отдыха. В ходе одного подхода расходуется определённое количество гликогена, пропорциональное выполненной работе. Молочная кислота, накапливаемая в мышце в результате гликолитического способа восстановления АТФ, останавливает работу задолго до исчерпания запасов гликогена в мышце. Многократно повторяя нагрузку после отдыха, достаточного для существенного вывода молочной кислоты из мышцы, можно добиться значительного расхода гликогена в мышцах.
При определённых целях тренинга эффект от последующей нагрузки может не просто линейно суммироваться с эффектом, полученным в предыдущем подходе, но и существенно усиливать его. Так, например, в случае с короткой интенсивной нагрузкой, максимум потребления кислорода наблюдается не во время самого подхода, а несколько позже, когда происходит так называемый "возврат кислородного долга" – восстановление за счёт кислородного окисления уровня макроэнергетических фосфатов (АТФ и креатинфосфата), израсходованных в ходе интенсивной работы. Повторные нагрузки после существенного восстановления уровня макроэнергетически фосфатов, но при сохраняющемся ещё некоторое время высоком уровне потребления кислорода, приводят к повышению уровня потребления кислорода от подхода к подходу, что оказывает более сильный тренирующий эффект на аэробные способности организма. В рассматриваемом примере отдых между подходами уже не может быть произвольным, так как повторная нагрузка после возвращения потребления кислорода к уровню, соответствующему состоянию покоя, не даст необходимого тренировочного эффекта. Скорость восстановления макроэнергетических фосфатов примерно равна скорости их расхода, поэтому в рассматриваемом примере отдых после нагрузки должен по своей длительности совпадать с длительностью самой нагрузки: например, 30 секунд работы - 30 секунд отдыха.
По каким же правилам должны суммироваться тренировочные эффекты от повторяющихся в ходе одной тренировки нагрузок, если цель тренировки разрушение миофибриллярных белков? Как я уже упоминал ранее, каждый последующий подход по степени разрушительного воздействия на мышцы менее эффективен, чем предыдущие, ввиду постепенного снижения мощности сокращения по причине остаточного накопления кислых продуктов метаболизма в мышце и развития нервного торможения в ЦНС. Очевидно, что в этом случае последующая нагрузка не может каким-либо образом усилить эффект от предыдущей, помимо простого суммирования микротравм, полученных в ходе каждого отдельного подхода. Следовательно, отдых между подходами можно не ограничивать какими-либо особыми условиями, помимо времени, которым располагает атлет. Этот отдых должен лишь обеспечивать существенное снижение концентрации молочной кислоты в мышце, и восстановление способности ЦНС генерировать максимально мощный импульс, дабы мышца могла снова развить максимальную мощность. А указанные восстановительные процессы оказываются весьма длительными, например, полный вывод молочной кислоты из мышцы при её значительном накоплении обеспечивается только по истечении нескольких часов после нагрузки, но для существенного снижения концентрации молочной кислоты в мышце достаточно 5-10 минут - для небольших мышц, или при работе, не связанной со значительным накоплением молочной кислоты, и 10-20 минут - для крупных мышечных групп либо при сильном закислении мышц в ходе подхода. Именно такой длительный отдых между подходами обеспечит максимальный эффект от повторяющихся нагрузок в рассматриваемом нами типе тренинга. Короткий интервал отдыха, который так любят многие бодибилдеры, обеспечивающий чувство "закачки" мышц, приводит лишь к максимальному закислению мышц и крови, что может быть полезно для развития сопротивляемости организма снижению рН внутренней среды, но не имеет прямого отношения к стимулированию последующего роста мышц.
Итак, со временем отдыха мы разобрались. Каково же оптимальное число подходов?
Как я уже отмечал, молочная кислота не выводится полностью из мышцы даже при отдыхе между подходами в 10-20 минут, то есть развиваемая мощность сокращения в каждом последующем подходе будет несколько ниже, чем в предыдущем. Задавать повторную нагрузку на мышцу имеет смысл только на определённом уровне интенсивности, поэтому после существенного снижения мощности мышц, развиваемой во время подхода, нагрузку на данную мышцу следует прекращать. Эксперименты показывают, что переломный момент в развитии мощности наступает в среднем после пятого-шестого подхода в упражнении. По-видимому, именно это количество подходов для тренировки одной мышечной группы и следует признать оптимальным в рассматриваемом нагрузочном режиме. Впрочем, тут встаёт следующий вопрос: указанное число повторений оптимально для максимального разрушения миофибриллярных белков, но является ли максимальное разрушение оптимальным для достижения максимального сверхвосстановления мышц во время отдыха?
Закон восстановления энергетических резервов гласит, что чем расход энергии при работе мышц больше, тем интенсивнее протекают процессы восстановления и тем значительнее превышение исходного уровня энергетических ресурсов в фазе суперкомпенсации. Однако при чрезмерно интенсивной работе, связанной со значительным накоплением продуктов метаболизма, скорость восстановительных процессов может снизиться, а фаза суперкомпенсации будет достигнута в более поздние сроки и выражена в меньшей степени. По-видимому, этому же закону подчиняются и процессы восстановления белковых структур мышц. Как я уже отмечал во второй части, чрезмерные разрушения затрудняют процессы восстановления и могут привести даже к отрицательному результату. Поэтому количество микротравм, полученных в ходе тренировки, должно быть не максимальным, а оптимальным - то есть, с одной стороны, достаточным для того, чтобы инициировать восстановительные процессы, а с другой - не слишком большим, чтобы не сорвать восстановительные возможности организма. Однозначно указать количество подходов, необходимое для достижения оптимального количества микротравм, невозможно, так как это количество зависит от уровня тренированности мышц и интенсивности задаваемой нагрузки. Например, всего лишь один интенсивный подход (здесь и далее имеется в виду интенсивность, позволяющая выполнять упражнение в рамках необходимого диапазона длительности нагрузки) может быть эффективней нескольких менее интенсивных подходов, а несколько высокоинтенсивных подходов могут оказаться уже слишком разрушительными для организма.
В регулировании уровня тренировочной нагрузки применяются две конкурирующих методики. Суть первой методики заключается в том, что объём нагрузки задаётся заранее (например, 5-6 подходов), но на заданном уровне интенсивности и при заданной длительности подхода (то есть при заранее известном весе снаряда и количестве повторений), подходы выполняются не до отказа, а прерываются по выполнении заданной работы. По мере повышения тренированности мышц повышается и интенсивность подходов (вес снаряда), и таким способом осуществляется чёткое дозирование нагрузки. Ошибкой в данном случае будет не регулировать нагрузку заранее, а стремиться выполнять все подходы на пределе интенсивности, выжимая из организма максимум.
Вторая методика основывается на прямо противоположном принципе – в работе используется нагрузка максимальной интенсивности, которую можно развить в рамках необходимого диапазона длительности, а вот общее воздействие на мышцу регулируется количеством повторений такой нагрузки (то есть количеством подходов). В этом случае необходимое количество подходов, как правило, оказывается меньшим, чем в рамках первой методики.
Достигаемый эффект зависит не только от величины нагрузки, но и от уровня тренированности мышц. Так, в нетренированных мышцах даже один подход далеко не предельной интенсивности вызывает сильнейшие разрушения (вспомните, свои ощущения на следующий день после первого посещения тренажёрного зала) и наоборот - в тренированной мышце даже множество высокоинтенсивных подходов может не вызвать необходимого эффекта.
Так, например, при редких тренировках, рекомендуемых Ментцером, энергетический потенциал мышц остаётся на довольно низком уровне даже в течение длительного периода тренировок, поскольку срочный тренировочный эффект в энергетической сфере не переходит в долговременную адаптацию ввиду большого перерыва в тренировках - что и облегчает воздействие нагрузки на мышцу. В "Супертренинге" Ментцера каждая тренировка по разрушающему миофибриллярные белки эффекту близка к "первой" тренировке, именно поэтому при таком виде тренинга оказывается достаточным одного-единственного "отказного" подхода.
Итак, если для роста мышцы, может быть достаточно даже одного подхода, то кажется, что тренировать мышцу несколькими упражнениями тем более ни к чему. С другой стороны, варьируя используемыми упражнениями, можно добиться воздействия на различные пучки мышечных волокон, что может способствовать развитию пропорциональной мускулатуры. Однако тяжелый тренинг, основанный на стимулировании роста мышц путем их предварительного разрушения, требует напряжения восстановительных функций организма и когда ему придется делить ограниченные пластические и энергетические ресурсы между всеми мышцами, нуждающимися в восстановлении, не факт что результат восстановления вас устроит. Каждому атлету придется искать баланс между желанием получить идеальную фигуру и восстановительными резервами организма. Если вы не используете в период тяжелых тренировок дополнительные "восстановители", предпочтительно будет остановить свой выбор на нескольких крупных мышечных группах и базовых упражнениях, и не распылять свои силы на весь спектр существующих движений, тем более что влияние упражнений на форму мышц сильно преувеличено. Почему я настаиваю именно на базовых упражнениях со свободными весами, а не рекомендую воспользоваться тем или иным тренажером? Кажется, что с точки зрения теории, что бы вы ни делали, лишь бы расходовали энергию, а уж делаете вы это в тренажере или с помощью штанги не имеет значения, но так кажется только на первый взгляд. Большинство тренажеров основаны на системе блоков, сила трения, в которых, достигает порой значительных величин, в результате позитивное прямое движение затруднено, зато при обратном - негативном движении (именно тогда когда мышца способна развить максимальную силу) сила трения облегчает работу, в результате чего средняя мощность подхода в тренажере ниже, чем в аналогичном движении со свободным весом, что естественно отрицательно сказывается на достигаемом эффекте. Из существующих тренажеров могу порекомендовать только тренажеры рычажного типа с навешивающимися дисками, - работа в них аналогична работе со свободными весами. Скажу еще, что тот, кто изобретет тренажер, в котором опускать вес будет тяжелее, чем поднимать его, произведет переворот в бодибилдинге.
Наконец, переходим к самому главному вопросу, вызывающему наибольшее количество споров - каков должен быть отдых между тренировками? Рекомендую вам обратиться ко второй части статьи и вспомнить, что в самом простом случае величина отдыха между тренировками определяется временем необходимым для восстановления и достижения состояния "суперкомпенсации" ведущей тренируемой функции.
Еще совсем недавно было распространено мнение, что для восстановления мышцы после тренировки достаточно 48-ми часов. Возможно, в этом есть доля истины, так как примерно через такой период отдыха наблюдается суперкомпенсация параметров ответственных за энергетический потенциал мышцы. В случае же получения микротравм через 48 часов мышца не только не восстановится, но даже не успеет очиститься от поврежденных структур. Что же, возможно для восстановления мышц требуется 5-7 дней? Именно к этому сроку обычно пропадают болевые ощущения в мышцах после тяжелой нагрузки, и именно такой период отдыха становится популярным в последнее время. Вынужден разочаровать вас - исчезновение болевых ощущений вовсе не означает, что мышца восстановилась, и достигнут окончательный эффект от тренировки, это значит лишь то, что в мышце закончилось воспаление, сопровождающее процессы лизиса поврежденных структур. Для полного восстановления поврежденных волокон и достижения состояния "суперкомпенсации", в зависимости от величины повреждений может потребоваться еще не менее недели. Получается, что тренировка, сопровождающаяся микротравмами мышц и сильными болевыми ощущениями, не должна практиковаться чаще, чем два-три раза в месяц на одну группу мышц. Применение стероидов может сократить время отдыха, но не кардинально, скорее стероиды делают фазу суперкомпенсации более выраженной.
Предвижу возражения - если для восстановления после тренировки требуется около двух недель, то как же удается получить рост мышечной массы при тренировках одной мышцы два-три раза в неделю? Плохо ли, хорошо ли, но мышца растет и в этом случае. Дело в том, что на начальном этапе таких тренировок мышечные волокна повреждаются на каждой тренировке, и ни о каком полноценном восстановлении речь не идет. Одни микротравмы накладываются на другие, и так продолжается около месяца до тех пор, пока значительно не возрастет энергетический потенциал мышцы, что блокирует получение микротравм, и только после этого в мышцах начинают преобладать восстановительные процессы. Таким образом, при частых тренировках суперкомпенсация и полное восстановление мышц становится возможной только после существенной адаптации мышц к задаваемой нагрузке. Процессы восстановления и роста длятся еще около месяца, на этом, если ничего не менять в тренировках, рост мышечной массы и силовых показателей заканчивается, по причине все той же адаптации мышц к нагрузке и отсутствия нового стимула к росту. Как правило, требуется еще около двух месяцев на то, чтобы понять, что выбранная методика тренировок перестала давать результаты и попытаться что-то изменить в тренировках. Итак, на достижение гипертрофии мышц при обычных тренировках (наиболее распространенных по всем тренажерным залам) требуется два-три месяца, практически таких же результатов в увеличении мышечной массы (но не работоспособности) можно получить от нескольких тренировок, давая мышцам полноценный отдых длительностью полторы-две недели, а не дожидаясь пока мышцы добьются отдыха сами, адаптировавшись к нагрузке.
Вы, наверное, уже обратили внимание на то, что из сделанных теоретических предпосылок, в качестве системы тренировок, направленной на развитие сократительных структур мышц, постепенно вырисовывается система сильно напоминающая "Супертренинг" Ментцера, отличительными чертами которой являются:
-ограниченное количество используемых упражнений (одно два базовых упражнения на одну мышечную группу);
- ограниченное количество высокоинтенсивных "отказных" подхода в каждом упражнении;
- длительный отдых между тренировками одной мышечной группы (полторы-две недели).
Казалось бы, эти положения полностью противоречат принципам современного бодибилдинга, основой которого являются практически ежедневные, высокообъемные тренировки. Критики системы Ментцера утверждают, что данная система противоречит основам теории физической культуры и вообще физиологии человека, и не может дать никакого результата. Однако как я показал выше, это не так. Просто для адептов классического тренинга рост мышц стал неразрывно связан с объемом выполняемой работы. Между тем, как я показал проделанным анализом, стимулом к росту мышечной ткани является не собственно объем работы, а изменения внутренней среды мышц, возникающие входе тренировки. Объем работы может быть лишь средством, вызывающим эти изменения, но далеко не единственным, - повышение интенсивности выполняемой работы оказывает более значительное влияние на состояние внутренней среды мышц, даже при незначительном объеме выполняемой работы.
Тут самое время напомнить, что рассмотренная выше методика тренировки оптимальна не вообще, а лишь для развития сократительных структур мышц, сила же мышцы определяется не только суммарным поперечным сечением сократительных структур. Во второй части я показал, что сила, развиваемая мышечным волокном, зависит от насыщенности волокна АТФ. Так как сокращение мышц не мгновенно и длится некоторое время даже при единичных повторениях и сопровождается расходом АТФ, то результат выполнения упражнения зависит еще и от способности мышц мгновенно восстанавливать уровень АТФ, то есть от концентрации в волокне креатинфосфата и соответствующих ферментов.
Содержание креатинфосфата в мышцах спортсменов 1.5-2 раза выше, чем у нетренированных людей, соответственно, данное качество мышц поддается тренировке. Посмотрим, какой вид тренировки наиболее эффективен для целей повышения в мышцах концентрации креатинфосфата.
Надо отметить, что содержание креатина в мышцах значительно превышает концентрацию собственно креатинфосфата. Так, общая концентрация креатина в мышцах составляет в среднем 120 ммоль/кг, в то время как с фосфатом связано (то есть является креатинфосфатом) только около 70 ммоль/кг. Таким образом, существенная часть креатина в мышцах находится в не связанном с фосфатом состоянии, и резерв увеличения концентрации креатинфосфата заключается как раз в этом не связанном с фосфатом креатине, необходимо лишь заставить мышцы фосфорилировать больше креатина.
Существенное снижение концентрации креатинфосфата во время интенсивного сокращения мышц (то есть отсоединение от него фосфата и превращение просто в креатин) сразу по прекращении работы приводит к интенсификации процессов восстанавливающих его уровень. Во время отдыха, благодаря кислородному окислению, АДФ и фосфат, в избытке накопившиеся в мышце в результате гидролиза АТФ при работе миозиновых мостиков и кальциевых насосов, вновь превращаются в АТФ, а затем фосфатная группа переносится с АТФ на креатин, с образованием креатинфосфата. В результате концентрация креатинфосфата в мышце уже через несколько минут отдыха не только восстанавливается, но и превышает исходный уровень, характерный для состояния покоя. То есть наблюдается сверхвосстановление креатинфосфата в мышце, однако такое состояние длится недолго и концентрация креатинфосфата снижается уже через пару часов. Проводя повторные нагрузки на мышцу в состоянии суперкомпенсации, то есть после отдыха в несколько минут, можно добиться заметного повышения концентрации креатинфосфата. Правда, уже через несколько часов концентрация последнего существенно снижается, но, по-видимому, некоторое превышение исходного уровня сохраняется дольше, так как регулярные тренировки (не реже 2-3-х раз в неделю) приводят к постепенному относительно стойкому повышению концентрации креатинфосфата в мышцах, в противовес этому, перерыв в тренировках, дольше, чем на одну неделю, заметно снижает уровень креатинфосфата.
Рассмотрим чуть более подробно принципы тренировок, направленных на развитие креатинфосфатной мощности и емкости мышц.
Уровень нагрузки при таких тренировках должен быть достаточно высоким (чтобы активировать большую часть мышечных волокон и обеспечить высокую скорость расхода энергии) и составлять 70-85 % от единичного максимума.
Длительность нагрузки должна быть таковой, чтобы запасы креатинфосфата в мышце были использованы не менее чем на половину, то есть нагрузка должна продлиться не менее 7-ми секунд. В то же время работу желательно прекращать до активации гликолиза, так как накопление молочной кислоты в мышцах приводит к замедлению темпов восстановления АТФ и креатинфосфата.
Соответственно, стремится к полному отказу мышц не следует, и нагрузка не должна длиться дольше 15 секунд. Если вышесказанное перевести на язык повторений, то рекомендуемое количество повторений в подходе составит 4-6. Отдых между подходами должен быть около 3-5 минут, что необходимо для обеспечения сверхвосстановления уровня креатинфосфата. И хотя теоретически возможен и более длительный отдых, так как сверхвосстановление длится полтора - два часа, но исходя из принципа экономии тренировочного времени, достаточно ограничится 3-5 минутами.
Количество таких подходов должно составлять от 5 до 10, больше просто не имеет смысла, так как резервы подъема уровня креатинфосфата в ходе одного занятия не беспредельны, а вот усталость будет накапливаться от подхода к подходу.
Интересно отметить, что заслуженный тренер России по пауэрлифтингу Б.И.Шейко иногда практикует на своих подопечных выполнение серий подходов одного упражнения два раза за одну тренировку. Например, после 5-6 подходов в жиме лежа следует нагрузка на ноги, а затем спортсмен возвращается к выполнению жима лежа и делает еще 5-6 подходов. Не знаю, какой смысл сам автор программ вкладывает в эти действия (возможно, просто стремится к общему увеличению объема нагрузки на
требуемом уровне интенсивности), но, помимо всего прочего, такого рода практика должна способствовать повышению уровня креатинфосфата в мышцах, так как повторное возвращение к выполняемому упражнению после получасового - часового отдыха происходит на фоне повышенного предыдущими подходами уровня креатинфосфата.
Говоря о методах повышения концентрации креатинфосфата в мышцах, нельзя не поднять вопрос об эффективности приема креатина в качестве пищевой добавки. Запасы креатина в организме пополняются благодаря синтезу его в печени и поступлению креатина с пищей (мясные продукты). Эксперименты (Harris et al.) показывают, что прием высоких доз креатина (5 г 4-5 раз в сутки - 5 г креатина эквивалентно одному килограмму сырого мяса) в течение недели приводит к существенному увеличению как концентрации креатина в мышцах, так и концентрации креатинфосфата. Но наиболее выражен прирост этих показателей при ежедневных тренировках. Так содержание креатина в мышцах в среднем увеличилось с 118.1 ммоль/кг до 148.5 ммоль/кг в не упражнявшейся мышце и до 162.2 ммоль/кг в упражнявшейся. Содержание креатинфосфата за этот же период возросло от 81.6 ммоль/кг до 93.8 ммоль/кг в не упражнявшейся и до 103.1 в упражнявшейся мышце. Дальнейший прием креатина не привел к существенным изменениям концентрации креатина и креатинфосфата в мышцах. Интересно отметить что ряд спортсменов не получили существенного прироста вышеуказанных показателей, несмотря на потребление креатина, как оказалось эти спортсмены изначально обладали высокими показателями содержания креатина в мышцах. В данных экспериментах убедительно доказано, что прием сверхдоз креатина с пищей положительно сказывается на креатинфосфатной емкости мышц, однако о побочных эффектах таких дозировок ничего не сообщается.
Итак, мы рассмотрели методы тренировок, способствующие развитию силы собственно мышечных волокон. Сила же мышцы как целого зависит от того, как много волокон одновременно включены в работу и от того, с какой частотой стимулируются мышечные волокна (чем выше частота, тем сильнее сокращение). Что, в свою очередь, зависит от того, насколько сильно поляризуется мембрана тела мотонейрона, расположенного в спинном мозге под воздействием сигнала, поступающего по сети нейронов из вышележащих отделов ЦНС (центральной нервной системы). Путь нервного импульса начинается в двигательных центрах головного мозга и проходит вниз по спинному мозгу к мотонейронам, иннервирующим волокна той или иной мышцы. Напоминаю, что каждый мотонейрон имеет свой порог возбудимости и включается в работу, только если возбуждение его мембраны превышает этот порог. Таким образом, чем сильнее импульс, поступающий от мозга, тем больше мотонейронов, а соответственно, и иннервируемых ими волокон, подключаются к сокращению. Кроме того, чем сильнее поляризация мембраны мотонейрона, тем выше частота потенциала действия, возникающего в мотонейроне, и передающегося по аксону к мышечным волокнам.
Управление движением - процесс крайне сложный и запутанный, и я не рискну утверждать, что ученые здесь до конца во всем разобрались, а я тем более далек от полного понимания этих процессов. Поэтому я постараюсь объяснить ключевые моменты, не вдаваясь в дебри.
Судя по всему, управление двигательной активностью организовано так, что мозгу очень тяжело заставить сокращаться все двигательные единицы (мотонейроны и иннервируемые ими волокна) одновременно. ЦНС не генерирует максимальный импульс сразу, а запускает пробный импульс определенной величины (в зависимости от ожидаемой нагрузки), который активирует определенное количество мотонейронов. Специальные рецепторы, расположенные в мышцах (мышечные веретена), сигнализируют в мозг об изменениях длины мышцы, под действием поступившего сигнала и если сокращения не происходит или скорость его недостаточна (нагрузка слишком велика), то мозг усиливает запускающий сигнал и вовлекает в работу большее количество мотонейронов, одновременно усиливая частоту потенциала действия уже работающих мотонейронов. В результате одни волокна вовлекаются в работу чуть раньше, другие чуть позже, таким образом, максимумы сокращения различных волокон не совпадают, и двигательные единицы работают асинхронно (как поршни в двигателе автомобиля). Так достигается плавность движения, но не реализуется максимум силы, который мог бы быть достигнут при одновременном совпадении максимумов сокращения всех волокон мышцы. Между тем способность к быстрому вовлечению в работу максимального количества волокон поддается тренировке. Задача атлета научить мозг генерировать как можно более мощный запускающий импульс. Похоже, что развитие таких способностей подчиняется тем же правилам, что и тренировка всех иных функциональных качеств спортсмена, ранее рассматриваемых в данной работе. Прохождение максимально мощного нервного импульса по всей цепочке, от двигательных отделов головного мозга, до мышечных волокон, вызывает напряжение всех элементов этой цепи и ослабление их функциональных возможностей. То есть наблюдается физическая усталость - торможение нервной системы, что выражается в потере способности ЦНС генерировать и передавать сигнал требуемой силы. Восстановление функции нервной системы в период отдыха приводит к суперкомпенсации ее функциональных возможностей, а регулярное повторение этих процессов приводит к закреплению долговременных адаптационных изменений в ЦНС спортсмена.
Итак, тактическая цель нервно-моторной тренировки - заставить ЦНС генерировать максимально мощный нервный импульс. Для чего можно использовать работу с околопредельными весами на 1-3 повторения, либо работу с умеренным весом, но во взрывном стиле, стараясь разгонять снаряд до максимальных скоростей, прикладывая к нему по всей траектории максимальную силу. Интересно, что работая и с относительно легкими весами можно воздействовать на ЦНС, если доводить подход до отказа мышц. В попытке преодолеть сопротивление в последних отказных повторениях мозгу приходится максимально сильно стимулировать мышцы к сокращению. Так что отказные тренировки так же можно считать тренировкой ЦНС.
Отдых между подходами на тренировке нагружающей ЦНС должен быть достаточно длительным, для восстановления способности ЦНС и собственно мышц развить необходимое усилие (от 5 минут и более, в зависимости от упражнения). В литературе я не встречал конкретных сведений о сроках сверхвосстановления возможностей ЦНС после тяжелой тренировки, поэтому делать выводы о необходимом отдыхе между такого рода тренировками я могу только исходя из практики силовых видов спорта. Как правило, серьезная нагрузка на ЦНС не практикуется чаще двух раз в неделю, и реже чем раз в 7-10 дней.
Но оказывается, что мощный импульс от ЦНС это еще не залог максимальной активации мотонейронов. Дело в том, что в сухожилиях расположены специальные рецепторы, так называемые органы Гольджи, цель которых контроль величины напряжения мышцы. При превышении напряжения в сухожилиях определенного порога, органы Гольджи оказывают на мотонейроны данной мышцы тормозящее воздействие. Понятно, что благодаря такому механизму мышца защищает себя от разрывов при чрезмерной нагрузке. Однако сухожильные рецепторы не могут точно определить величину критического напряжения и срабатывают, как правило, с большим запасом, активизируясь, когда напряжение значительно превышает привычное. Поэтому цель спортсмена, стремящегося к поднятию действительно больших весов, отодвинуть этот защитный барьер. Один из способов такого воздействия на защитные механизмы - привыкание сухожилий и рецепторов к около предельной нагрузке. Чему может способствовать все та же работа с максимальными весами в 1-3 повторениях, и даже более того, - выполнение частичных повторений с нагрузкой, превышающей единичный максимум, то есть выполнение полуприседов, тяг с возвышения, дожимов штанги и пр. Так что для тренировки способности спортсмена максимально активизировать как можно большее число волокон работа с большими весами все же предпочтительнее просто отказных повторений с более легким весом, ибо последние не способны воздействовать на сухожилия и чувствительность органов Гольджи. Вышесказанное еще раз подтверждает хорошо известный в теории физической культуры принцип специфичности, который можно выразить простыми словами: "Что тренируешь, то и получаешь".
Выносливость
Итак, я рассмотрел факторы, от которых зависит сила, развиваемая мышцами, и методы тренировок, направленных на развитие силы за счет этих факторов. Теперь настало время разобраться, от чего зависит способность мышц удерживать необходимый уровень силы определенное время, то есть от чего зависит выносливость спортсмена, и какие методы тренировки приводят к развитию общей и специфической выносливости.
После возрождения олимпийских игр до начала I мировой войны господствующим методом тренировки на выносливость был метод непрерывной работы. Предполагалось, что интенсивность и продолжительность тренировки должна соответствовать условиям предстоящих соревнований. Так, например, бегуны совершали забеги равные соответствующим соревновательным дистанциям, пытаясь, раз от разу, улучшить результат в забеге. В 20-е годы на смену непрерывной нагрузке пришел метод интервальной тренировки, успешное внедрение которого связано с именем выдающегося финского бегуна Пааво Нурми и известного теоретика спортивных тренировки М.Пикхала. Ими было показано, что многократное повторение коротких, но более интенсивных нагрузок дает гораздо больший тренировочный эффект, чем более длительная, но менее интенсивная работа. В последующие годы данный тезис получил все больше практических подтверждений, а исследователи выявили биохимические факторы лежащие в основе эффективности интервальных тренировок.
Так в чем же преимущество интервальных тренировок?
Для ответа на этот вопрос необходимо систематизировать множество факторов, влияющих на работоспособность спортсмена. Среди факторов, ограничивающих работоспособность, можно выделить факторы общей выносливости, определяющиеся возможностями различных систем организма обеспечивать работу мышц и специфические факторы, ответственные за работоспособность собственно мышц спортсмена.
Общая выносливость лимитируется, в основном, способностью организма спортсмена обеспечить потребность мышц в кислороде и питательных веществах, а так же способностью отводить от мышц метаболические факторы утомления, такие как молочная и угольная кислоты. Напоминаю, что молочная кислота - это конечный продукт гликолиза, а угольная кислота получается при растворении углекислого газа, образующегося в ходе окисления органических веществ. Таким образом, общая выносливость определяется возможностями кровеносной и дыхательной систем организма, а также запасами органического топлива (в основном, глюкозы в мышцах и печени и жирных кислот в жировой ткани) и эффективностью мобилизации топлива в случае необходимости.
Способность организма поглощать кислород и выводить углекислый газ зависит, прежде всего, от дыхательного объема легких, и скорости газообмена в них.
Возможности кровеносной системы по переносу кислорода лимитируются общим объемом крови, концентрацией в крови гемоглобина (белка переносчика кислорода), и скоростью циркуляции крови. Последняя зависит от ударного объема сердца (объема крови прокачиваемого сердцем за одно сокращение).
Возможности кровеносной системы по отводу кислых продуктов метаболизма от работающих мышц определяются, помимо общего объема крови и скорости ее циркуляции, способностью организма поддерживать физиологически нормальный уровень рН крови, скоростью утилизации молочной кислоты, и скоростью вывода углекислого газа через легкие. Протекание многих жизненно важных химических процессов в организме зависит от кислотно-щелочного равновесия (рН) среды. Примером может служить угнетающее влияние повышения кислотности мышечной саркоплазмы на активность АТФазы миозина, о котором я рассказывал ранее. В состоянии покоя кислотно-щелочное равновесие крови слегка смещено в щелочную сторону, и рН крови составляет 7.4 (в нейтральной среде рН=7). Интенсивная мышечная деятельность сопровождается образованием большого количества молочной кислоты в мышцах, кислота выводится в кровь, что повышает кислотность крови и снижает рН до 6.9-6.8. Организм человека способен выдержать лишь незначительное снижение рН крови, так в состоянии изнеможения рН может опуститься до 6.5, при этом наблюдается тошнота и головокружение. Борьбу с повышением кислотности крови организм ведет с помощью буферных реакций. Вещества, называемые бикарбонатными буферами, и содержащиеся в крови (примером может служить NaHCO3), вступают в реакцию с молочной кислотой, образуя соль молочной кислоты и более слабую угольную кислоту, которая легко распадается на воду и углекислый газ. Последний выводится через легкие в выдыхаемый воздух, образуя, так называемый, неметаболический избыток углекислого газа. Определяя соотношение вдыхаемого кислорода и выдыхаемого углекислого газа можно судить об интенсивности гликолиза в мышцах.
Зависит рН среды и от скорости вывода молочной кислоты из крови. Заканчивает свой метаболический путь молочная кислота либо в сердечной мышце, где окисляется в митохондриях и служит источником АТФ для сокращения миокарда, либо в печени, где с затратой энергии преобразуется обратно в глюкозу и далее в гликоген, после чего снова может служить источником энергии.
Какого же рода тренировки способствуют развитию описанных выше факторов, определяющих общую выносливость спортсмена?
Развитию дыхательной и кровеносной систем организма, увеличению возможностей данных систем по доставке кислорода к мышцам должны способствовать тренировки, сопровождающиеся созданием максимальной потребности мышц в кислороде. Такого рода нагрузка вызывает напряжение указанных систем организма и, соответственно, способствует необходимым адаптационным изменениям в данных системах.
Высокая скорость потребления кислорода достигается при нагрузках такой мощности, поддерживать которую организм спортсмена способен лишь ограниченное время, после чего наступает усталость, поэтому эффективными будут серии высокоинтенсивных нагрузок перемежающиеся с отдыхом, необходимым для восстановления сил. Время удержания максимума потребления кислорода составляет обычно не более 6 минут, именно столько и должно длиться тренирующее упражнение аэробной направленности, отдых между повторениями упражнения в этом случае должен также составлять минут 6.
Эффективными при воздействии на аэробные способности организма оказываются и серии более коротких высокоинтенсивных нагрузок длительностью от 30 до 90 секунд, чередующихся со столь же короткими интервалами отдыха. Данный метод получил название "циркуляторной" интервальной тренировки, так как наиболее эффективно воздействует на циркуляторные показатели кровеносной системы и вызывает выраженную гипертрофию сердца. Эффективность метода заключается в том, что потребление кислорода в первые минуты отдыха после прекращения нагрузки сохраняется на высоком уровне, так как происходит так называемый возврат кислородного долга (получение окислительным путем энергии, необходимой для восполнения запасов АТФ и креатинфосфата, а также для вывода молочной кислоты из мышц). Таким образом, в период короткого отдыха уровень потребления кислорода снижается не существенно, в то время как мышцы восстанавливают свои силы, восполняя запасы АТФ и креатинфосфата, избавляясь от продуктов метаболизма, после чего получают возможность вновь развить высокое усилие и вновь создать высокую потребность в кислороде. Поэтому в течение всей "циркуляторной" тренировки уровень потребления кислорода совершает незначительные колебания возле максимальных значений.
Для развития способности организма поддерживать кислотно-щелочное равновесие крови (за счет ускорения утилизации кислых продуктов метаболизма и накопления резервов буферных веществ) необходимо в ходе тренировки добиваться максимального повышения кислотности крови (естественно в пределах физиологически нормальных величин). Для чего наиболее эффективны серии высокоинтенсивных нагрузок длительностью 1-2 минуты с 1-2 минутным интервалом отдыха между подходами. Объясняется это тем, что максимум накопления молочной кислоты в крови наблюдается через некоторое время после прекращения короткой высокоинтенсивной нагрузки. Задержка в достижении максимума кислотности крови связана с необходимостью некоторого времени на вывод молочной кислоты из мышцы. Повторные нагрузки после отдыха, достаточного для значительного вывода молочной кислоты из мышц и восстановления их работоспособности, но не столь длительного, чтобы уровень кислоты в крови успел снизиться, приводят к наложению максимумов выброса кислоты в кровь друг на друга, и к значительному сдвигу кислотно-щелочного равновесия крови в кислую сторону. Усталость мышц, в виду остаточного накопления в них продуктов метаболизма, наблюдается после 3-4-х повторений такой нагрузки, поэтому эффективно будет разделить тренировку на несколько серий по 3-4 подхода с 10-15 минутным отдыхом между сериями.
Теперь разберемся с обеспечением мышц топливом. Основными источниками энергии для мышечной деятельности являются жирные кислоты, углеводы (в основном глюкоза) и аминокислоты. Запас свободных аминокислот в организме весьма незначителен, к использованию собственных белков в качестве топлива организм прибегает только в условиях недостатка энергии, например, при голодании или длительных истощающих нагрузках. При этом аминокислоты, получаемые при катаболизме собственных белков, все равно, как правило, проходят этап преобразования в печени в глюкозу. Таким образом, основными источниками энергии, для мышечной деятельности остаются жирные кислоты и глюкоза. Жирные кислоты запасаются в жировой ткани, при необходимости они извлекаются в кровь и доставляются к работающим мышцам, саркоплазма мышц располагает и собственным небольшим запасом жирных кислот. Запасы жиров в организме практически неисчерпаемы в рамках единичной тренировки, если бы марафонский бег обеспечивался исключительно жирными кислотами, то для преодоления дистанции потребовалось бы около 320 граммов жира, в то время как, даже худощавый человек располагает несколькими килограммами жиров, а у отдельных индивидов вес жировой ткани может достигать нескольких десятков килограмм. Но возможности жиров как источника энергии ограничены. Жирные кислоты активно используются только при низко-интенсивных нагрузках, так как выход энергии на одну молекулу кислорода и скорость окисления для жиров несколько ниже, чем для глюкозы, поэтому при повышении энергозатрат, митохондрии переключаются с жирных кислот на глюкозу. Более того, энергозатраты, превышающие окислительные возможности мышц, активизируют гликолиз, а в этом случае глюкоза становится незаменимым источником энергии. Глюкоза запасается организмом в основном в мышцах в виде гранул гликогена, определенный запас гликогена имеется и в печени - 100-200 грамм. При коротких интенсивных нагрузках энергозатраты мышц покрываются за счет внутренних резервов гликогена. Размер внешних запасов энергии становятся актуальным лишь при пролонгированных нагрузках. Запасы жиров, как я уже упоминал ранее, исчерпать не реально при любой разумной длительности нагрузки, поэтому при использовании жиров в качестве источника энергии имеет значение не их количество, а активность ферментов, извлекающих жирные кислоты из жировой ткани и скорость проникновения жирных кислот в митохондрии. А вот резерв гликогена в печени может сыграть решающее значение при длительных нагрузках, поэтому только запасы гликогена, но не запасы жиров, можно рассматривать в качестве фактора ограничивающего общую работоспособность организма. Соответствующие тренировки способны привести к увеличению запасов гликогена в печени и мышцах. Происходит это увеличение по уже известной схеме истощение - восстановление - сверхвосстановление. После истощающих нагрузок, при условии достаточного потребления углеводов с пищей, суперкомпенсация гликогена в печени и мышцах наступает примерно на третьи сутки. Для повышения содержания гликогена в печени используется так же метод "углеводной загрузки", когда в течение нескольких дней ограничивается потребление углеводов, затем, за день до соревнований, потребление углеводов значительно увеличивают, что приводит к резкому увеличению запасов гликогена в печени.
На этом я, пожалуй, завершу рассмотрение тренировочных методов, воздействующих на факторы общей выносливости организма, и перейду к рассмотрению собственно силовой выносливости мышц.
Способность мышц сокращаться с требуемым усилием определяется, прежде всего, насыщенностью мышц энергией. И хотя основной причиной снижения силы сокращения мышц является вовсе не отсутствие АТФ, а снижение АТФазной активности миозина и нарушения в механизме передачи возбуждения с нерва вглубь волокна, причиной упомянутых нарушений являются метаболические факторы утомления (молочная кислота, ортофосфорная кислота, АДФ и др.), а их появление в мышце связано как раз с доступностью энергии. Недостаток АТФ, производимой окислительным путем, приводит к активизации гликолиза и появлению в мышце большого количества молочной кислоты (лактата), недостаток энергии, производимой путем гликолиза, приводит к истощению запасов креатинфосфата и, соответственно, увеличению в мышце концентрации ортофосфата.
По Н.И.Волкову, при рассмотрении факторов работоспособности мышц, в зависимости от основного механизма энергообеспечения, следует различать аэробную (окисление) и анаэробную работоспособность, а анаэробная работоспособность, в свою очередь, делится на лактатную (гликолиз) и алактатную (креатинфосфат). В качестве главных критериев оценки механизмов энергообеспечения мышечной деятельности принято выделять максимальную мощность, время удержания максимальной мощности, и общую емкость механизма. Максимальная мощность - это наибольшая скорость образования АТФ в данном метаболическом процессе. От мощности механизма энергообеспечения зависит возможная сила сокращения мышц в данном режиме работы. Под емкостью понимается общее количество энергии, которое можно получить за счет данного механизма ресинтеза АТФ.
Алактатная работоспособность мышц
Максимальная алактатная мощность, с одной стороны, зависит от концентрации и активности фермента креатинкиназа (переносящего фосфатную группу с креатинфосфата на АДФ) и собственно креатинфосфата, с другой стороны мощность данной реакции зависит от потребности мышц в энергии, соответственно, определяется максимальной скоростью расхода АТФ развиваемой мышцами. Максимальная длительность удержания алактатной мощности составляет 6-12 секунд. Алактатная емкость зависит от запасов креатинфосфата в мышце. О методах тренировки алактатной мощности и емкости я уже рассказывал ранее, рассматривая методы развития силы, и сейчас не буду подробно останавливаться на этом вопросе.
Лактатная работоспособность мышц
Максимальная лактатная мощность определяется главным образом концентрацией и активностью ключевых ферментов гликолиза. Время удержания максимальной мощности данного метаболического процесса составляет 30-60 секунд, и определяется, с одной стороны, устойчивостью ферментов гликолиза к понижению рН среды (повышение кислотности среды ингибирует активность гликолитических ферментов, что подавляет энергопроизводство), и устойчивостью кислотно-щелочного равновесия внутренней среды мышц, в условиях усиленной выработки лактата. С другой стороны, время удержания максимальной гликолитической мощности лимитируется факторами утомления
мышцы, снижающими интенсивность сокращения.
Из вышесказанного следует, что для запуска адаптационных процессов, направленных на увеличение максимальной гликолитической мощности, длительность нагрузки должна соответствовать времени удержания максимальной мощности данного метаболического процесса, что составляет 30-60 секунд. Отдых между подходами должен быть достаточно длительным, для обеспечения вывода продуктов метаболизма из мышцы и развития высокой мощности гликолиза в следующем подходе. Устойчивость рН среды мышечных волокон к выбросу молочной кислоты и устойчивость ключевых ферментов к снижению рН вырабатывается в ходе тренировок, сопровождающихся максимальным накоплением лактата в мышцах. Это могут быть нагрузки высокой интенсивности, длительностью 1-1.5 минуты до наступления отказа мышц, вызванного сильным закислением, либо более короткие нагрузки, длительностью 20-40 секунд, со столь же коротким интервалом отдыха, приводящие к кумулятивному накоплению лактата в мышцах.
Гликолитическая емкость определяется главным образом запасами гликогена в мышцах, гликоген печени для процессов гликолиза не обладает достаточной мобильностью. О методах накопления мышечного гликогена, как и гликогена печени, я уже рассказывал при рассмотрении факторов общей работоспособности организма.
Аэробная работоспособность мышц
Максимальная аэробная мощность зависит главным образом от плотности митохондрий в мышечных волокнах, концентрации и активности окислительных ферментов, скорости поступления кислорода вглубь волокна. Объем кислорода доступного для окислительных реакций лимитируется, как факторами общей работоспособности организма, которые я уже ранее рассматривал, так и рядом локальных внутримышечных факторов, среди которых можно выделить капилляризацию мышц, концентрацию миоглобина, диаметр мышечного волокна (чем меньше диаметр волокна, тем лучше оно снабжается кислородом и тем выше его относительная аэробная мощность). Скорость производства АТФ за счет окисления достигает максимальных значений на 2-3-й минуте работы, что связано с необходимостью развертывания множества процессов, обеспечивающих доставку кислорода к митохондриям. Время удержания максимальной аэробной мощности составляет примерно 6 минут, в дальнейшем аэробная мощность снижается по причине усталости всех активно работающих систем организма. Соответственно, для повышения аэробной мощности мышц тренировочная нагрузка должна длиться не менее 2 минут (для выхода скорости энергопроизводства на максимум). Не имеет смысла и затягивать нагрузку дольше чем на 6 минут, при тренировке именно мощности, так как далее идет ее (мощности) снижение. Эффективным оказывается многократное повторение таких нагрузок.
В заключение хочу привести сводную таблицу тренировочного воздействия на работоспособность мышц в различных режимах работы, почерпнутую мной из диссертации М.Хосни, посвященной изучению биохимических основ интервальной тренировки. Для развития соответствующих качеств Хосни рекомендует следующие методические приемы:
Направление воздействия тренировки Интенсивность Длительность нагрузки Отдых между подходами Количество подходов
Алактатная анаэробная мощность Максимальная 7-10 с. 2-5 мин. 5-6
Алактатная анаэробная емкость Максимальная 7-10 с. 0.3-1.5 мин. 10-12
Лактатная анаэробная мощность Высокая 20-30 с. 6-10 мин. 3-4
Лактатная анаэробная емкость Высокая 40-90 с. 5-6 мин. 10-15
Аэробная мощность На максимуме потребления кислорода 0.5-2.5 мин. 0.5-3 мин. 10-15
Мышечные объемы
Ну что же, я уже рассмотрел основные методы тренировок, способствующих развитию силы и силовой выносливости мышц. Настало время приступить к рассмотрению тренировочных методик, в полной мере способствующих гипертрофии мышц, для чего следует определить тканевые и внутриклеточные структуры, от развития которых зависят мышечные объемы спортсмена.
Общие правила построения тренировочного процесса
До сего момента я рассматривал тренировку, главным образом, с точки зрения ее влияния на гипертрофию сократительных структур мышц. Но, наиболее полное развитие мышечных объемов и силового потенциала спортсмена может обеспечить лишь рост всех основных компонент мышечного волокна и развитие всех основных двигательных функций. Поэтому, прежде чем приступить к рассмотрению правил построения таких многоцелевых тренировок следует систематизировать тренировочные цели, а затем определить основные функции, развитие которых может привести к достижению поставленных целей.
В зависимости от специализации спортсмена в качестве основной цели тренинга можно выделить развитие следующих качеств мышц:
- сила, развиваемая мышцами в специализированных движениях (пауэрлифтинг, тяжелая атлетика);
- силовая выносливость (гиревой спорт, борьба, спринтерский бег);
- мышечные объемы (бодибилдинг).
Сила
Давайте в первую очередь разберемся, от чего зависит сила мышц, а вернее ее наглядное практическое проявление - результат, достигаемый спортсменом в специализированных движениях, например в соревновательных движениях тяжелой атлетики или пауэрлифтинга. Проявление скоростно-силовых качеств мышц, в упомянутых видах спорта, несколько отличается. Цель пауэрлифтера поднять максимальный вес независимо от скорости движения. В тяжелой атлетике соревновательные движения технически более сложные, и конечный результат зависит от того, будет ли штанга в нужной точке траектории иметь нужную скорость движения. Масса снаряда в тяжелой атлетике относительно ниже, чем в пауэрлифтинге, однако снаряд приходится разгонять до значительно больших скоростей. Но при внимательном рассмотрении различия оказываются не столь существенными. Дело в том, что сила, которую спортсмену необходимо прикладывать к снаряду для его равномерного подъема (вернее проекция силы на вертикальную ось) равна произведению массы снаряда на ускорение свободного падения, вспомните второй закон Ньютона F=mg (напоминаю, что буквами F принято обозначать силу, m -массу, а g- ускорение свободного падения). Конечно, в момент отрыва, для придания снаряду начальной скорости, требуется приложить несколько большую силу, так как снаряду необходимо сообщить начальное ускорение. Сила, которую необходимо в этом случае приложить к снаряду, равна F=m(g+a), где а - ускорение, сообщаемое снаряду. Различие между пауэрлифтингом и тяжелой атлетикой как раз и проявляется в величине этого ускорения. В пауэрлифтинге штанге необходимо сообщить лишь минимальное ускорение, достаточное для ее срыва и придания минимальной скорости, достаточной для прохождения мертвой точки. В тяжелой же атлетике требование к развиваемому ускорению значительно выше, чем в пауэрлифтинге. Но и в том и в другом случае результат зависит от силы, прикладываемой к снаряду. Чем выше сила, тем больше масса штанги, которой пауэрлифтер может придать минимально необходимое ускорение, и тем больше ускорение, которое тяжелоатлет может придать штанге с определенной массой. Таким образом, в обоих видах спорта результат зависит от силы, прикладываемой к снаряду, а, соответственно, от силы, развиваемой мышцами. Здесь следует иметь в виду и еще одно различие между пауэрлифтингом и тяжелой атлетикой - сила мышц, зависит от скорости их сокращения, вспомните соотношение Хилла, упоминаемое мной в первой части, - чем выше скорость сокращения мышцы, тем меньшую силу она способна развить. В тяжелой атлетике мышцы вынуждены сокращаться при несколько больших скоростях, чем в пауэрлифтинге, поэтому и развиваемая ими сила несколько меньше.
Результат в соревновательных движениях зависит не только от силы мышц, но и от оптимальной траектории движения, своевременного и эффективного приложения силы к снаряду, то есть от техники выполнения упражнения. Я не буду подробно останавливаться на этом вопросе, так как не считаю себя в нем достаточно компетентным, тем более, что за годы развития таких видов спорта, как тяжелая атлетика и пауэрлифтинг, накоплен богатый методический материал по постановке техники соревновательных движений. Скажу только, что основой освоения техники выполнения упражнения является наработка определенного количества движений, что приводит к закреплению в центральной нервной системе (ЦНС) двигательного стереотипа. Отчасти, видимо, поэтому одним из существенных критериев в планировании тренировочных нагрузок на начальном этапе тренинга, в классической спортивной школе, является КПШ - количество подъёмов штанги.
Давайте лучше рассмотрим, от чего зависит собственно сила, развиваемая мышцами, и какие методы тренировки могут повлиять на способность мышц генерировать силу. Как вы помните из первой части, сократительным элементом волокна является миофибрильная нить. Силу, развиваемую миофибриллой, генерируют боковые выступы молекулы миозина, называемые мостиками, совершая гребковые движения. Обращаю ваше внимание на тот факт, что миофибрилла, это цепочка последовательно соединенных саркомеров, а крепость цепи, как известно, зависит от крепости самого слабого ее звена. Сила миофибриллы как целого не может быть больше силы ее части - отдельного саркомера, то есть каждый саркомер должен развивать одинаковую силу, и эта сила равна силе всей миофибриллы. Сила, развиваемая саркомером, зависит от его длины, чем длиннее саркомер, тем большим количеством миозиновых мостиков он располагает и тем сильнее его сокращение. Мышечные волокна разных мышц и даже одних и тех же мышц, но у различных индивидов имеют разные длины саркомеров, и, соответственно, разную способность к генерации силы. Однако длина саркомера задается генетически и не поддается тренировке, поэтому в дальнейшем влияние длины саркомера на силу я даже не буду рассматривать.
Итак, из вышесказанного можно сделать вывод, что сила мышцы зависит не от длины миофибрильных нитей (от этого зависит амплитуда сокращения мышцы), а от количества сократительных структур в поперечном сечении мышцы. А вот этот параметр как раз и поддается развитию.
Основные принципы тренировки, нацеленной на рост сократительных структур мышц, я рассматривал во второй части. Напомню основную фабулу:
Высокоинтенсивные тренировки, приводящие к сокращению мышц в условиях недостатка макроэнергетических фосфатов, разрушают сократительные белки мышечных волокон. Микротравмы мышечных волокон запускают восстановительные процессы, приводящие к интенсификации синтеза белка и делению клеток-сателлитов, приводящих к увеличению клеточных ядер в мышечных волокнах, что все в месте, при условии достаточно длительного и полноценного восстановления, приводит к увеличению сократительных структур в мышце.
Рассмотрим, какова же должна быть методика тренировки, максимальным образом способствующая гипертрофии сократительных структур мышц.
Для начала, исследуем вопрос об оптимальном типе и темпе движения. Каким же должно быть движение? Позитивным? Негативным? Статическим? А каков должен быть темп движения? Взрывным? Подчёркнуто медленным? Среди методистов тренинга по данному вопросу не существует единства мнений. И это не удивительно. Если исходить из того, что цель тренинга - получение микротравм при напряжении мышцы в условиях недостатка макроэнергетических фосфатов, то становится ясно, что достижение этой цели, в той или иной мере, возможно любым из способов, главное расходовать энергию. При этом следует иметь в виду то, что по мере повышения тренированности мышц добиваться стрессовой для мышц ситуации становится всё труднее, поэтому по мере роста тренированности спортсмена относительная скорость расхода энергии в мышце должна возрастать, то есть должна возрастать средняя мощность подхода. Добиться увеличения мощности можно не только благодаря увеличению веса снаряда, но и благодаря изменению характера движения.
Подъем снаряда должен быть максимально быстрым для данного веса, так как, во-первых, от скорости подъема зависит развиваемая мощность (то есть расход энергии в единицу времени), а во-вторых, только максимально быстрый для данного веса подъем означает, что к снаряду прикладывается максимальное усилие (то есть мышцы максимально напряжены). Иногда может показаться, что медленное движение более сильно нагружает мышцы, так как при искусственно замедленном подъеме справится с весом труднее, чем при работе во «взрывном» стиле. Но на деле медленный подъем означает, что в работу включено не максимально возможное число двигательных единиц, а те, что включены, работают не с полной отдачей.
Что касается обратной фазы движения (опускание веса), то на начальном этапе тренинга для получения микротравм достаточно будет и свободного опускания снаряда, при этом расход энергии будет наблюдаться только при подъёме, а во время обратного движения и отдыха в нижней и верхней точке траектории запасы АТФ будут восполняться. Активное сопротивление мышц растяжению во время негативной фазы движения приведёт к тому, что энергия будет расходоваться не только на подъём снаряда, но и на его опускание. Кроме того, постоянное напряжение мышцы, возникающее благодаря активности мышцы и во время негативной фазы, блокирует кровоснабжение и доставку кислорода, а значит и снижает интенсивность окислительных процессов в мышце, что может еще более спровоцировать дефицит энергии. Не следует забывать и то, что, как я показал во второй части статьи, негативная фаза движения должна обладать наиболее сильным разрушающим воздействием по самому своему характеру. Таким образом, при стремлении усилить воздействие тренировки на мышцу следует практиковать быстрый взрывной подъем снаряда и его медленное подконтрольное опускание (кстати, именно такой стиль выполнения упражнения практиковал Дориан Ятс). Если же и этого оказывается недостаточно для микротравмирования мышц, то можно значительно повысить вес снаряда и поднимать его с помощью партнера, а опускать самостоятельно (негативные повторения), в этом случае разрушительное воздействие тренировки на мышечные волокна станет еще более выраженным. И так, если мышцы новичка будут изнывать от боли после тренировки практически с любой нагрузкой, например, при использовании простого позитивного движения, то опытные регулярно тренирующиеся атлеты могут получить микротравмы только при акцентировании движения на негативной фазе, или даже практикуя исключительно негативные повторения с большими весами. Данный факт и позволил распространиться заблуждению, что микротравмы волокон возникают исключительно во время негативной фазы движения.
А вот другой извечный вопрос: каково должно быть количество повторений в упражнении?
Должен заметить, что вопрос этот принципиально некорректен, поскольку определяющим для процесса тренировки является вовсе не количество повторений, а время напряжения мышц, или по-другому, время нахождения под нагрузкой. Вероятность возникновение микротравм существенно возрастает после снижения концентрации креатинфосфата вполовину от исходного уровня, что в быстрых волокнах наступает примерно на седьмой-десятой секундах максимально интенсивной работы. В то же время вероятность получения микротравм снижается после достижения максимальной скорости воспроизводства АТФ за счёт гликолиза и снижения АТФ-азной активности мышц по причине накопления кислых продуктов метаболизма. Последнее наблюдается примерно через тридцать-сорок секунд после начала работы. Таким образом, для достижения требуемого эффекта в быстрых волокнах подход должен длиться не менее семи и не более сорока секунд.
Так сколько же конкретно должна длится нагрузка? Понятно, что чем интенсивнее нагрузка, тем выше скорость расхода энергии, но тем меньше возможная длительность такой нагрузки, в свою очередь менее интенсивная нагрузка может продлиться дольше, но развиваемая при этом скорость расхода энергии ниже, чем в первом случае. По-видимому, оптимальная длительность нагрузки находится где-то посередине указанного интервала и составляет двадцать-тридцать секунд.
Почему же разные мышцы даже у одного человека лучше реагируют на разное количество повторений? Дело в том, что различные движения длятся разное время. Чем больше амплитуда движения, тем дольше длится повторение и тем меньше их укладывается в требуемое время. Так, за двадцать-тридцать секунд работы в таких движениях, как приседания и становая тяга, можно сделать шесть-восемь повторений, в жимовых упражнениях и при работе на бицепс, трицепс - восемь-десять повторений, а вот уже в упражнениях на голень и предплечья количество повторений может составить десять-пятнадцать. Таким образом, никакого принципиального различия в тренировке бицепса, четырёхглавой мышцы бедра или голени на самом деле не существует - во всех случаях, несмотря на разное число повторений, нагрузка длится примерно одинаковое время.
Но нередко рекомендуемое практиками количество повторений выходит за определённые выше рамки и достигает двадцати-тридцати повторений даже в таких упражнениях, как приседания и становая тяга. Дело в том, что мышцы состоят не только из быстрых, но и из медленных волокон, и тренировке медленных волокон тоже полезно уделять внимание. Как я уже писал ранее, скорость расхода АТФ в медленных волокнах значительно ниже, чем в быстрых, поэтому сокращение медленных волокон энергетически более устойчиво. Создать временный дефицит АТФ, необходимый для получения микроразрывов в медленных волокнах, за промежуток времени в пятнадцать-двадцать секунд практически невозможно. Но так как интенсивность гликолиза в окислительных волокнах невысока, а максимальная скорость производства АТФ окислительным путём может быть достигнута только через одну-две минуты после начала работы, причём напряжение мышцы при нагрузке свыше 30% от максимальной практически останавливает кровообращение, что затрудняет доставку кислорода и получение энергии окислительным путём, то при предельно интенсивной работе длительностью шестьдесят-девяносто секунд и более можно ожидать достижения дефицита АТФ и микротравм в медленных волокнах.
Кстати, вклад медленных волокон в общую гипертрофию мышц зависит от их доли в композиции мышц. По-видимому, утверждения о том, что большое количество повторений лучше воздействует на определённые мышцы, исходят от людей, у которых в данных мышцах преобладают медленные волокна. В общем же случае, следует признать, что максимального развития мышц можно добиться, только уделяя внимание волокнам всех типов.
Следующий очень важный вопрос: необходимо ли работать до отказа, как это утверждает, например, Ментцер, и есть ли какое-то особое магическое значение у последнего отказного повторения?
И так, если исходить из сделанного мной предположения, что микротравмы миофибрилл возникают, когда после нескольких секунд работы существенно снижается уровень креатинфосфата в активно используемых мышечных волокнах, то происходит это, как правило, задолго до отказа мышцы как целого. Таким образом, микротравмы мышц напрямую с отказом не связаны, но, понятно, что чем дольше продлится нагрузка на мышцы в низкоэнергетическом состоянии (чем ближе подход подойдет к отказу), тем больше микротравм получит мышца. Если изначально цель тренировки (оптимальное количество микротравм) будет достигнута при работе необходимой длительности (см. выше) с относительно небольшим весом (и, соответственно, без достижения отказа), то по мере повышения тренированности мышц нужно повышать и вес снаряда, и, в конечном счёте, всё сведётся к тому, что отказ будет неминуемо наступать в требуемом диапазоне повторений. Таким образом, при стремлении усилить воздействие тренировки на мышцы, конечно же, необходимо стремиться к отказу. Работа до отказа говорит о том, что вы максимально выложились в данном подходе, но не следует полагать, что все дело именно в последнем «отказном» повторении, и не выполни вы его - тренировка прошла зря, как это, фактически, утверждает Майк Ментцер. Поэтому в потенциально травмоопастных упражнениях, требующих высокой концентрации внимания и соблюдения чёткой техники выполнения движения - таких как становая тяга или приседания со штангой на плечах, доводить себя до действительно «отказного» повторения, наверное, все-таки, не стоит. Говоря об «отказе» следует учитывать и еще один важный фактор: отказное повторение - это всегда максимальное нервное напряжение, попытка мозга сгенерировать максимально мощный нервный импульс для развития максимального усилия, особая роль «отказного» может проявляться не в воздействии на мышцы а в воздействии именно на центральную нервную систему, но об этом я буду говорить позже.
А сейчас настало время рассмотреть вопрос об отдыхе между подходами и количестве самих подходов.
Для того, чтобы определить оптимальное количество повторений и отдых между ними, следует разобраться, для чего вообще используется интервальный метод тренировок - метод чередования нагрузки и отдыха.
Нагрузки, повторяющиеся через определённый интервал отдыха, используются для более выраженного воздействия на тренируемую функцию. В зависимости от особенностей происходящих в организме процессов можно выделить два принципа взаимодействия нагрузок в ходе одного тренировочного занятия.
В самом простом случае эффект, достигаемый в каждом подходе, не зависит от предшествующей нагрузки. Время отдыха между подходами в этом случае строго не регламентировано, оно должно быть лишь достаточным для восстановления сил, дабы иметь возможность повторить последующий подход на требуемом уровне мощности. Общий эффект от такой тренировки является простой суммой тренировочных эффектов, достигнутых в ходе отдельных подходов. Примером может служить тренировка, направленная на развитие гликолитической ёмкости мышц, срочная тактическая цель которой - существенное исчерпание запасов гликогена в мышце, дабы спровоцировать его сверхвосстановление в период отдыха. В ходе одного подхода расходуется определённое количество гликогена, пропорциональное выполненной работе. Молочная кислота, накапливаемая в мышце в результате гликолитического способа восстановления АТФ, останавливает работу задолго до исчерпания запасов гликогена в мышце. Многократно повторяя нагрузку после отдыха, достаточного для существенного вывода молочной кислоты из мышцы, можно добиться значительного расхода гликогена в мышцах.
При определённых целях тренинга эффект от последующей нагрузки может не просто линейно суммироваться с эффектом, полученным в предыдущем подходе, но и существенно усиливать его. Так, например, в случае с короткой интенсивной нагрузкой, максимум потребления кислорода наблюдается не во время самого подхода, а несколько позже, когда происходит так называемый "возврат кислородного долга" – восстановление за счёт кислородного окисления уровня макроэнергетических фосфатов (АТФ и креатинфосфата), израсходованных в ходе интенсивной работы. Повторные нагрузки после существенного восстановления уровня макроэнергетически фосфатов, но при сохраняющемся ещё некоторое время высоком уровне потребления кислорода, приводят к повышению уровня потребления кислорода от подхода к подходу, что оказывает более сильный тренирующий эффект на аэробные способности организма. В рассматриваемом примере отдых между подходами уже не может быть произвольным, так как повторная нагрузка после возвращения потребления кислорода к уровню, соответствующему состоянию покоя, не даст необходимого тренировочного эффекта. Скорость восстановления макроэнергетических фосфатов примерно равна скорости их расхода, поэтому в рассматриваемом примере отдых после нагрузки должен по своей длительности совпадать с длительностью самой нагрузки: например, 30 секунд работы - 30 секунд отдыха.
По каким же правилам должны суммироваться тренировочные эффекты от повторяющихся в ходе одной тренировки нагрузок, если цель тренировки разрушение миофибриллярных белков? Как я уже упоминал ранее, каждый последующий подход по степени разрушительного воздействия на мышцы менее эффективен, чем предыдущие, ввиду постепенного снижения мощности сокращения по причине остаточного накопления кислых продуктов метаболизма в мышце и развития нервного торможения в ЦНС. Очевидно, что в этом случае последующая нагрузка не может каким-либо образом усилить эффект от предыдущей, помимо простого суммирования микротравм, полученных в ходе каждого отдельного подхода. Следовательно, отдых между подходами можно не ограничивать какими-либо особыми условиями, помимо времени, которым располагает атлет. Этот отдых должен лишь обеспечивать существенное снижение концентрации молочной кислоты в мышце, и восстановление способности ЦНС генерировать максимально мощный импульс, дабы мышца могла снова развить максимальную мощность. А указанные восстановительные процессы оказываются весьма длительными, например, полный вывод молочной кислоты из мышцы при её значительном накоплении обеспечивается только по истечении нескольких часов после нагрузки, но для существенного снижения концентрации молочной кислоты в мышце достаточно 5-10 минут - для небольших мышц, или при работе, не связанной со значительным накоплением молочной кислоты, и 10-20 минут - для крупных мышечных групп либо при сильном закислении мышц в ходе подхода. Именно такой длительный отдых между подходами обеспечит максимальный эффект от повторяющихся нагрузок в рассматриваемом нами типе тренинга. Короткий интервал отдыха, который так любят многие бодибилдеры, обеспечивающий чувство "закачки" мышц, приводит лишь к максимальному закислению мышц и крови, что может быть полезно для развития сопротивляемости организма снижению рН внутренней среды, но не имеет прямого отношения к стимулированию последующего роста мышц.
Итак, со временем отдыха мы разобрались. Каково же оптимальное число подходов?
Как я уже отмечал, молочная кислота не выводится полностью из мышцы даже при отдыхе между подходами в 10-20 минут, то есть развиваемая мощность сокращения в каждом последующем подходе будет несколько ниже, чем в предыдущем. Задавать повторную нагрузку на мышцу имеет смысл только на определённом уровне интенсивности, поэтому после существенного снижения мощности мышц, развиваемой во время подхода, нагрузку на данную мышцу следует прекращать. Эксперименты показывают, что переломный момент в развитии мощности наступает в среднем после пятого-шестого подхода в упражнении. По-видимому, именно это количество подходов для тренировки одной мышечной группы и следует признать оптимальным в рассматриваемом нагрузочном режиме. Впрочем, тут встаёт следующий вопрос: указанное число повторений оптимально для максимального разрушения миофибриллярных белков, но является ли максимальное разрушение оптимальным для достижения максимального сверхвосстановления мышц во время отдыха?
Закон восстановления энергетических резервов гласит, что чем расход энергии при работе мышц больше, тем интенсивнее протекают процессы восстановления и тем значительнее превышение исходного уровня энергетических ресурсов в фазе суперкомпенсации. Однако при чрезмерно интенсивной работе, связанной со значительным накоплением продуктов метаболизма, скорость восстановительных процессов может снизиться, а фаза суперкомпенсации будет достигнута в более поздние сроки и выражена в меньшей степени. По-видимому, этому же закону подчиняются и процессы восстановления белковых структур мышц. Как я уже отмечал во второй части, чрезмерные разрушения затрудняют процессы восстановления и могут привести даже к отрицательному результату. Поэтому количество микротравм, полученных в ходе тренировки, должно быть не максимальным, а оптимальным - то есть, с одной стороны, достаточным для того, чтобы инициировать восстановительные процессы, а с другой - не слишком большим, чтобы не сорвать восстановительные возможности организма. Однозначно указать количество подходов, необходимое для достижения оптимального количества микротравм, невозможно, так как это количество зависит от уровня тренированности мышц и интенсивности задаваемой нагрузки. Например, всего лишь один интенсивный подход (здесь и далее имеется в виду интенсивность, позволяющая выполнять упражнение в рамках необходимого диапазона длительности нагрузки) может быть эффективней нескольких менее интенсивных подходов, а несколько высокоинтенсивных подходов могут оказаться уже слишком разрушительными для организма.
В регулировании уровня тренировочной нагрузки применяются две конкурирующих методики. Суть первой методики заключается в том, что объём нагрузки задаётся заранее (например, 5-6 подходов), но на заданном уровне интенсивности и при заданной длительности подхода (то есть при заранее известном весе снаряда и количестве повторений), подходы выполняются не до отказа, а прерываются по выполнении заданной работы. По мере повышения тренированности мышц повышается и интенсивность подходов (вес снаряда), и таким способом осуществляется чёткое дозирование нагрузки. Ошибкой в данном случае будет не регулировать нагрузку заранее, а стремиться выполнять все подходы на пределе интенсивности, выжимая из организма максимум.
Вторая методика основывается на прямо противоположном принципе – в работе используется нагрузка максимальной интенсивности, которую можно развить в рамках необходимого диапазона длительности, а вот общее воздействие на мышцу регулируется количеством повторений такой нагрузки (то есть количеством подходов). В этом случае необходимое количество подходов, как правило, оказывается меньшим, чем в рамках первой методики.
Достигаемый эффект зависит не только от величины нагрузки, но и от уровня тренированности мышц. Так, в нетренированных мышцах даже один подход далеко не предельной интенсивности вызывает сильнейшие разрушения (вспомните, свои ощущения на следующий день после первого посещения тренажёрного зала) и наоборот - в тренированной мышце даже множество высокоинтенсивных подходов может не вызвать необходимого эффекта.
Так, например, при редких тренировках, рекомендуемых Ментцером, энергетический потенциал мышц остаётся на довольно низком уровне даже в течение длительного периода тренировок, поскольку срочный тренировочный эффект в энергетической сфере не переходит в долговременную адаптацию ввиду большого перерыва в тренировках - что и облегчает воздействие нагрузки на мышцу. В "Супертренинге" Ментцера каждая тренировка по разрушающему миофибриллярные белки эффекту близка к "первой" тренировке, именно поэтому при таком виде тренинга оказывается достаточным одного-единственного "отказного" подхода.
Итак, если для роста мышцы, может быть достаточно даже одного подхода, то кажется, что тренировать мышцу несколькими упражнениями тем более ни к чему. С другой стороны, варьируя используемыми упражнениями, можно добиться воздействия на различные пучки мышечных волокон, что может способствовать развитию пропорциональной мускулатуры. Однако тяжелый тренинг, основанный на стимулировании роста мышц путем их предварительного разрушения, требует напряжения восстановительных функций организма и когда ему придется делить ограниченные пластические и энергетические ресурсы между всеми мышцами, нуждающимися в восстановлении, не факт что результат восстановления вас устроит. Каждому атлету придется искать баланс между желанием получить идеальную фигуру и восстановительными резервами организма. Если вы не используете в период тяжелых тренировок дополнительные "восстановители", предпочтительно будет остановить свой выбор на нескольких крупных мышечных группах и базовых упражнениях, и не распылять свои силы на весь спектр существующих движений, тем более что влияние упражнений на форму мышц сильно преувеличено. Почему я настаиваю именно на базовых упражнениях со свободными весами, а не рекомендую воспользоваться тем или иным тренажером? Кажется, что с точки зрения теории, что бы вы ни делали, лишь бы расходовали энергию, а уж делаете вы это в тренажере или с помощью штанги не имеет значения, но так кажется только на первый взгляд. Большинство тренажеров основаны на системе блоков, сила трения, в которых, достигает порой значительных величин, в результате позитивное прямое движение затруднено, зато при обратном - негативном движении (именно тогда когда мышца способна развить максимальную силу) сила трения облегчает работу, в результате чего средняя мощность подхода в тренажере ниже, чем в аналогичном движении со свободным весом, что естественно отрицательно сказывается на достигаемом эффекте. Из существующих тренажеров могу порекомендовать только тренажеры рычажного типа с навешивающимися дисками, - работа в них аналогична работе со свободными весами. Скажу еще, что тот, кто изобретет тренажер, в котором опускать вес будет тяжелее, чем поднимать его, произведет переворот в бодибилдинге.
Наконец, переходим к самому главному вопросу, вызывающему наибольшее количество споров - каков должен быть отдых между тренировками? Рекомендую вам обратиться ко второй части статьи и вспомнить, что в самом простом случае величина отдыха между тренировками определяется временем необходимым для восстановления и достижения состояния "суперкомпенсации" ведущей тренируемой функции.
Еще совсем недавно было распространено мнение, что для восстановления мышцы после тренировки достаточно 48-ми часов. Возможно, в этом есть доля истины, так как примерно через такой период отдыха наблюдается суперкомпенсация параметров ответственных за энергетический потенциал мышцы. В случае же получения микротравм через 48 часов мышца не только не восстановится, но даже не успеет очиститься от поврежденных структур. Что же, возможно для восстановления мышц требуется 5-7 дней? Именно к этому сроку обычно пропадают болевые ощущения в мышцах после тяжелой нагрузки, и именно такой период отдыха становится популярным в последнее время. Вынужден разочаровать вас - исчезновение болевых ощущений вовсе не означает, что мышца восстановилась, и достигнут окончательный эффект от тренировки, это значит лишь то, что в мышце закончилось воспаление, сопровождающее процессы лизиса поврежденных структур. Для полного восстановления поврежденных волокон и достижения состояния "суперкомпенсации", в зависимости от величины повреждений может потребоваться еще не менее недели. Получается, что тренировка, сопровождающаяся микротравмами мышц и сильными болевыми ощущениями, не должна практиковаться чаще, чем два-три раза в месяц на одну группу мышц. Применение стероидов может сократить время отдыха, но не кардинально, скорее стероиды делают фазу суперкомпенсации более выраженной.
Предвижу возражения - если для восстановления после тренировки требуется около двух недель, то как же удается получить рост мышечной массы при тренировках одной мышцы два-три раза в неделю? Плохо ли, хорошо ли, но мышца растет и в этом случае. Дело в том, что на начальном этапе таких тренировок мышечные волокна повреждаются на каждой тренировке, и ни о каком полноценном восстановлении речь не идет. Одни микротравмы накладываются на другие, и так продолжается около месяца до тех пор, пока значительно не возрастет энергетический потенциал мышцы, что блокирует получение микротравм, и только после этого в мышцах начинают преобладать восстановительные процессы. Таким образом, при частых тренировках суперкомпенсация и полное восстановление мышц становится возможной только после существенной адаптации мышц к задаваемой нагрузке. Процессы восстановления и роста длятся еще около месяца, на этом, если ничего не менять в тренировках, рост мышечной массы и силовых показателей заканчивается, по причине все той же адаптации мышц к нагрузке и отсутствия нового стимула к росту. Как правило, требуется еще около двух месяцев на то, чтобы понять, что выбранная методика тренировок перестала давать результаты и попытаться что-то изменить в тренировках. Итак, на достижение гипертрофии мышц при обычных тренировках (наиболее распространенных по всем тренажерным залам) требуется два-три месяца, практически таких же результатов в увеличении мышечной массы (но не работоспособности) можно получить от нескольких тренировок, давая мышцам полноценный отдых длительностью полторы-две недели, а не дожидаясь пока мышцы добьются отдыха сами, адаптировавшись к нагрузке.
Вы, наверное, уже обратили внимание на то, что из сделанных теоретических предпосылок, в качестве системы тренировок, направленной на развитие сократительных структур мышц, постепенно вырисовывается система сильно напоминающая "Супертренинг" Ментцера, отличительными чертами которой являются:
-ограниченное количество используемых упражнений (одно два базовых упражнения на одну мышечную группу);
- ограниченное количество высокоинтенсивных "отказных" подхода в каждом упражнении;
- длительный отдых между тренировками одной мышечной группы (полторы-две недели).
Казалось бы, эти положения полностью противоречат принципам современного бодибилдинга, основой которого являются практически ежедневные, высокообъемные тренировки. Критики системы Ментцера утверждают, что данная система противоречит основам теории физической культуры и вообще физиологии человека, и не может дать никакого результата. Однако как я показал выше, это не так. Просто для адептов классического тренинга рост мышц стал неразрывно связан с объемом выполняемой работы. Между тем, как я показал проделанным анализом, стимулом к росту мышечной ткани является не собственно объем работы, а изменения внутренней среды мышц, возникающие входе тренировки. Объем работы может быть лишь средством, вызывающим эти изменения, но далеко не единственным, - повышение интенсивности выполняемой работы оказывает более значительное влияние на состояние внутренней среды мышц, даже при незначительном объеме выполняемой работы.
Тут самое время напомнить, что рассмотренная выше методика тренировки оптимальна не вообще, а лишь для развития сократительных структур мышц, сила же мышцы определяется не только суммарным поперечным сечением сократительных структур. Во второй части я показал, что сила, развиваемая мышечным волокном, зависит от насыщенности волокна АТФ. Так как сокращение мышц не мгновенно и длится некоторое время даже при единичных повторениях и сопровождается расходом АТФ, то результат выполнения упражнения зависит еще и от способности мышц мгновенно восстанавливать уровень АТФ, то есть от концентрации в волокне креатинфосфата и соответствующих ферментов.
Содержание креатинфосфата в мышцах спортсменов 1.5-2 раза выше, чем у нетренированных людей, соответственно, данное качество мышц поддается тренировке. Посмотрим, какой вид тренировки наиболее эффективен для целей повышения в мышцах концентрации креатинфосфата.
Надо отметить, что содержание креатина в мышцах значительно превышает концентрацию собственно креатинфосфата. Так, общая концентрация креатина в мышцах составляет в среднем 120 ммоль/кг, в то время как с фосфатом связано (то есть является креатинфосфатом) только около 70 ммоль/кг. Таким образом, существенная часть креатина в мышцах находится в не связанном с фосфатом состоянии, и резерв увеличения концентрации креатинфосфата заключается как раз в этом не связанном с фосфатом креатине, необходимо лишь заставить мышцы фосфорилировать больше креатина.
Существенное снижение концентрации креатинфосфата во время интенсивного сокращения мышц (то есть отсоединение от него фосфата и превращение просто в креатин) сразу по прекращении работы приводит к интенсификации процессов восстанавливающих его уровень. Во время отдыха, благодаря кислородному окислению, АДФ и фосфат, в избытке накопившиеся в мышце в результате гидролиза АТФ при работе миозиновых мостиков и кальциевых насосов, вновь превращаются в АТФ, а затем фосфатная группа переносится с АТФ на креатин, с образованием креатинфосфата. В результате концентрация креатинфосфата в мышце уже через несколько минут отдыха не только восстанавливается, но и превышает исходный уровень, характерный для состояния покоя. То есть наблюдается сверхвосстановление креатинфосфата в мышце, однако такое состояние длится недолго и концентрация креатинфосфата снижается уже через пару часов. Проводя повторные нагрузки на мышцу в состоянии суперкомпенсации, то есть после отдыха в несколько минут, можно добиться заметного повышения концентрации креатинфосфата. Правда, уже через несколько часов концентрация последнего существенно снижается, но, по-видимому, некоторое превышение исходного уровня сохраняется дольше, так как регулярные тренировки (не реже 2-3-х раз в неделю) приводят к постепенному относительно стойкому повышению концентрации креатинфосфата в мышцах, в противовес этому, перерыв в тренировках, дольше, чем на одну неделю, заметно снижает уровень креатинфосфата.
Рассмотрим чуть более подробно принципы тренировок, направленных на развитие креатинфосфатной мощности и емкости мышц.
Уровень нагрузки при таких тренировках должен быть достаточно высоким (чтобы активировать большую часть мышечных волокон и обеспечить высокую скорость расхода энергии) и составлять 70-85 % от единичного максимума.
Длительность нагрузки должна быть таковой, чтобы запасы креатинфосфата в мышце были использованы не менее чем на половину, то есть нагрузка должна продлиться не менее 7-ми секунд. В то же время работу желательно прекращать до активации гликолиза, так как накопление молочной кислоты в мышцах приводит к замедлению темпов восстановления АТФ и креатинфосфата.
Соответственно, стремится к полному отказу мышц не следует, и нагрузка не должна длиться дольше 15 секунд. Если вышесказанное перевести на язык повторений, то рекомендуемое количество повторений в подходе составит 4-6. Отдых между подходами должен быть около 3-5 минут, что необходимо для обеспечения сверхвосстановления уровня креатинфосфата. И хотя теоретически возможен и более длительный отдых, так как сверхвосстановление длится полтора - два часа, но исходя из принципа экономии тренировочного времени, достаточно ограничится 3-5 минутами.
Количество таких подходов должно составлять от 5 до 10, больше просто не имеет смысла, так как резервы подъема уровня креатинфосфата в ходе одного занятия не беспредельны, а вот усталость будет накапливаться от подхода к подходу.
Интересно отметить, что заслуженный тренер России по пауэрлифтингу Б.И.Шейко иногда практикует на своих подопечных выполнение серий подходов одного упражнения два раза за одну тренировку. Например, после 5-6 подходов в жиме лежа следует нагрузка на ноги, а затем спортсмен возвращается к выполнению жима лежа и делает еще 5-6 подходов. Не знаю, какой смысл сам автор программ вкладывает в эти действия (возможно, просто стремится к общему увеличению объема нагрузки на
требуемом уровне интенсивности), но, помимо всего прочего, такого рода практика должна способствовать повышению уровня креатинфосфата в мышцах, так как повторное возвращение к выполняемому упражнению после получасового - часового отдыха происходит на фоне повышенного предыдущими подходами уровня креатинфосфата.
Говоря о методах повышения концентрации креатинфосфата в мышцах, нельзя не поднять вопрос об эффективности приема креатина в качестве пищевой добавки. Запасы креатина в организме пополняются благодаря синтезу его в печени и поступлению креатина с пищей (мясные продукты). Эксперименты (Harris et al.) показывают, что прием высоких доз креатина (5 г 4-5 раз в сутки - 5 г креатина эквивалентно одному килограмму сырого мяса) в течение недели приводит к существенному увеличению как концентрации креатина в мышцах, так и концентрации креатинфосфата. Но наиболее выражен прирост этих показателей при ежедневных тренировках. Так содержание креатина в мышцах в среднем увеличилось с 118.1 ммоль/кг до 148.5 ммоль/кг в не упражнявшейся мышце и до 162.2 ммоль/кг в упражнявшейся. Содержание креатинфосфата за этот же период возросло от 81.6 ммоль/кг до 93.8 ммоль/кг в не упражнявшейся и до 103.1 в упражнявшейся мышце. Дальнейший прием креатина не привел к существенным изменениям концентрации креатина и креатинфосфата в мышцах. Интересно отметить что ряд спортсменов не получили существенного прироста вышеуказанных показателей, несмотря на потребление креатина, как оказалось эти спортсмены изначально обладали высокими показателями содержания креатина в мышцах. В данных экспериментах убедительно доказано, что прием сверхдоз креатина с пищей положительно сказывается на креатинфосфатной емкости мышц, однако о побочных эффектах таких дозировок ничего не сообщается.
Итак, мы рассмотрели методы тренировок, способствующие развитию силы собственно мышечных волокон. Сила же мышцы как целого зависит от того, как много волокон одновременно включены в работу и от того, с какой частотой стимулируются мышечные волокна (чем выше частота, тем сильнее сокращение). Что, в свою очередь, зависит от того, насколько сильно поляризуется мембрана тела мотонейрона, расположенного в спинном мозге под воздействием сигнала, поступающего по сети нейронов из вышележащих отделов ЦНС (центральной нервной системы). Путь нервного импульса начинается в двигательных центрах головного мозга и проходит вниз по спинному мозгу к мотонейронам, иннервирующим волокна той или иной мышцы. Напоминаю, что каждый мотонейрон имеет свой порог возбудимости и включается в работу, только если возбуждение его мембраны превышает этот порог. Таким образом, чем сильнее импульс, поступающий от мозга, тем больше мотонейронов, а соответственно, и иннервируемых ими волокон, подключаются к сокращению. Кроме того, чем сильнее поляризация мембраны мотонейрона, тем выше частота потенциала действия, возникающего в мотонейроне, и передающегося по аксону к мышечным волокнам.
Управление движением - процесс крайне сложный и запутанный, и я не рискну утверждать, что ученые здесь до конца во всем разобрались, а я тем более далек от полного понимания этих процессов. Поэтому я постараюсь объяснить ключевые моменты, не вдаваясь в дебри.
Судя по всему, управление двигательной активностью организовано так, что мозгу очень тяжело заставить сокращаться все двигательные единицы (мотонейроны и иннервируемые ими волокна) одновременно. ЦНС не генерирует максимальный импульс сразу, а запускает пробный импульс определенной величины (в зависимости от ожидаемой нагрузки), который активирует определенное количество мотонейронов. Специальные рецепторы, расположенные в мышцах (мышечные веретена), сигнализируют в мозг об изменениях длины мышцы, под действием поступившего сигнала и если сокращения не происходит или скорость его недостаточна (нагрузка слишком велика), то мозг усиливает запускающий сигнал и вовлекает в работу большее количество мотонейронов, одновременно усиливая частоту потенциала действия уже работающих мотонейронов. В результате одни волокна вовлекаются в работу чуть раньше, другие чуть позже, таким образом, максимумы сокращения различных волокон не совпадают, и двигательные единицы работают асинхронно (как поршни в двигателе автомобиля). Так достигается плавность движения, но не реализуется максимум силы, который мог бы быть достигнут при одновременном совпадении максимумов сокращения всех волокон мышцы. Между тем способность к быстрому вовлечению в работу максимального количества волокон поддается тренировке. Задача атлета научить мозг генерировать как можно более мощный запускающий импульс. Похоже, что развитие таких способностей подчиняется тем же правилам, что и тренировка всех иных функциональных качеств спортсмена, ранее рассматриваемых в данной работе. Прохождение максимально мощного нервного импульса по всей цепочке, от двигательных отделов головного мозга, до мышечных волокон, вызывает напряжение всех элементов этой цепи и ослабление их функциональных возможностей. То есть наблюдается физическая усталость - торможение нервной системы, что выражается в потере способности ЦНС генерировать и передавать сигнал требуемой силы. Восстановление функции нервной системы в период отдыха приводит к суперкомпенсации ее функциональных возможностей, а регулярное повторение этих процессов приводит к закреплению долговременных адаптационных изменений в ЦНС спортсмена.
Итак, тактическая цель нервно-моторной тренировки - заставить ЦНС генерировать максимально мощный нервный импульс. Для чего можно использовать работу с околопредельными весами на 1-3 повторения, либо работу с умеренным весом, но во взрывном стиле, стараясь разгонять снаряд до максимальных скоростей, прикладывая к нему по всей траектории максимальную силу. Интересно, что работая и с относительно легкими весами можно воздействовать на ЦНС, если доводить подход до отказа мышц. В попытке преодолеть сопротивление в последних отказных повторениях мозгу приходится максимально сильно стимулировать мышцы к сокращению. Так что отказные тренировки так же можно считать тренировкой ЦНС.
Отдых между подходами на тренировке нагружающей ЦНС должен быть достаточно длительным, для восстановления способности ЦНС и собственно мышц развить необходимое усилие (от 5 минут и более, в зависимости от упражнения). В литературе я не встречал конкретных сведений о сроках сверхвосстановления возможностей ЦНС после тяжелой тренировки, поэтому делать выводы о необходимом отдыхе между такого рода тренировками я могу только исходя из практики силовых видов спорта. Как правило, серьезная нагрузка на ЦНС не практикуется чаще двух раз в неделю, и реже чем раз в 7-10 дней.
Но оказывается, что мощный импульс от ЦНС это еще не залог максимальной активации мотонейронов. Дело в том, что в сухожилиях расположены специальные рецепторы, так называемые органы Гольджи, цель которых контроль величины напряжения мышцы. При превышении напряжения в сухожилиях определенного порога, органы Гольджи оказывают на мотонейроны данной мышцы тормозящее воздействие. Понятно, что благодаря такому механизму мышца защищает себя от разрывов при чрезмерной нагрузке. Однако сухожильные рецепторы не могут точно определить величину критического напряжения и срабатывают, как правило, с большим запасом, активизируясь, когда напряжение значительно превышает привычное. Поэтому цель спортсмена, стремящегося к поднятию действительно больших весов, отодвинуть этот защитный барьер. Один из способов такого воздействия на защитные механизмы - привыкание сухожилий и рецепторов к около предельной нагрузке. Чему может способствовать все та же работа с максимальными весами в 1-3 повторениях, и даже более того, - выполнение частичных повторений с нагрузкой, превышающей единичный максимум, то есть выполнение полуприседов, тяг с возвышения, дожимов штанги и пр. Так что для тренировки способности спортсмена максимально активизировать как можно большее число волокон работа с большими весами все же предпочтительнее просто отказных повторений с более легким весом, ибо последние не способны воздействовать на сухожилия и чувствительность органов Гольджи. Вышесказанное еще раз подтверждает хорошо известный в теории физической культуры принцип специфичности, который можно выразить простыми словами: "Что тренируешь, то и получаешь".
Выносливость
Итак, я рассмотрел факторы, от которых зависит сила, развиваемая мышцами, и методы тренировок, направленных на развитие силы за счет этих факторов. Теперь настало время разобраться, от чего зависит способность мышц удерживать необходимый уровень силы определенное время, то есть от чего зависит выносливость спортсмена, и какие методы тренировки приводят к развитию общей и специфической выносливости.
После возрождения олимпийских игр до начала I мировой войны господствующим методом тренировки на выносливость был метод непрерывной работы. Предполагалось, что интенсивность и продолжительность тренировки должна соответствовать условиям предстоящих соревнований. Так, например, бегуны совершали забеги равные соответствующим соревновательным дистанциям, пытаясь, раз от разу, улучшить результат в забеге. В 20-е годы на смену непрерывной нагрузке пришел метод интервальной тренировки, успешное внедрение которого связано с именем выдающегося финского бегуна Пааво Нурми и известного теоретика спортивных тренировки М.Пикхала. Ими было показано, что многократное повторение коротких, но более интенсивных нагрузок дает гораздо больший тренировочный эффект, чем более длительная, но менее интенсивная работа. В последующие годы данный тезис получил все больше практических подтверждений, а исследователи выявили биохимические факторы лежащие в основе эффективности интервальных тренировок.
Так в чем же преимущество интервальных тренировок?
Для ответа на этот вопрос необходимо систематизировать множество факторов, влияющих на работоспособность спортсмена. Среди факторов, ограничивающих работоспособность, можно выделить факторы общей выносливости, определяющиеся возможностями различных систем организма обеспечивать работу мышц и специфические факторы, ответственные за работоспособность собственно мышц спортсмена.
Общая выносливость лимитируется, в основном, способностью организма спортсмена обеспечить потребность мышц в кислороде и питательных веществах, а так же способностью отводить от мышц метаболические факторы утомления, такие как молочная и угольная кислоты. Напоминаю, что молочная кислота - это конечный продукт гликолиза, а угольная кислота получается при растворении углекислого газа, образующегося в ходе окисления органических веществ. Таким образом, общая выносливость определяется возможностями кровеносной и дыхательной систем организма, а также запасами органического топлива (в основном, глюкозы в мышцах и печени и жирных кислот в жировой ткани) и эффективностью мобилизации топлива в случае необходимости.
Способность организма поглощать кислород и выводить углекислый газ зависит, прежде всего, от дыхательного объема легких, и скорости газообмена в них.
Возможности кровеносной системы по переносу кислорода лимитируются общим объемом крови, концентрацией в крови гемоглобина (белка переносчика кислорода), и скоростью циркуляции крови. Последняя зависит от ударного объема сердца (объема крови прокачиваемого сердцем за одно сокращение).
Возможности кровеносной системы по отводу кислых продуктов метаболизма от работающих мышц определяются, помимо общего объема крови и скорости ее циркуляции, способностью организма поддерживать физиологически нормальный уровень рН крови, скоростью утилизации молочной кислоты, и скоростью вывода углекислого газа через легкие. Протекание многих жизненно важных химических процессов в организме зависит от кислотно-щелочного равновесия (рН) среды. Примером может служить угнетающее влияние повышения кислотности мышечной саркоплазмы на активность АТФазы миозина, о котором я рассказывал ранее. В состоянии покоя кислотно-щелочное равновесие крови слегка смещено в щелочную сторону, и рН крови составляет 7.4 (в нейтральной среде рН=7). Интенсивная мышечная деятельность сопровождается образованием большого количества молочной кислоты в мышцах, кислота выводится в кровь, что повышает кислотность крови и снижает рН до 6.9-6.8. Организм человека способен выдержать лишь незначительное снижение рН крови, так в состоянии изнеможения рН может опуститься до 6.5, при этом наблюдается тошнота и головокружение. Борьбу с повышением кислотности крови организм ведет с помощью буферных реакций. Вещества, называемые бикарбонатными буферами, и содержащиеся в крови (примером может служить NaHCO3), вступают в реакцию с молочной кислотой, образуя соль молочной кислоты и более слабую угольную кислоту, которая легко распадается на воду и углекислый газ. Последний выводится через легкие в выдыхаемый воздух, образуя, так называемый, неметаболический избыток углекислого газа. Определяя соотношение вдыхаемого кислорода и выдыхаемого углекислого газа можно судить об интенсивности гликолиза в мышцах.
Зависит рН среды и от скорости вывода молочной кислоты из крови. Заканчивает свой метаболический путь молочная кислота либо в сердечной мышце, где окисляется в митохондриях и служит источником АТФ для сокращения миокарда, либо в печени, где с затратой энергии преобразуется обратно в глюкозу и далее в гликоген, после чего снова может служить источником энергии.
Какого же рода тренировки способствуют развитию описанных выше факторов, определяющих общую выносливость спортсмена?
Развитию дыхательной и кровеносной систем организма, увеличению возможностей данных систем по доставке кислорода к мышцам должны способствовать тренировки, сопровождающиеся созданием максимальной потребности мышц в кислороде. Такого рода нагрузка вызывает напряжение указанных систем организма и, соответственно, способствует необходимым адаптационным изменениям в данных системах.
Высокая скорость потребления кислорода достигается при нагрузках такой мощности, поддерживать которую организм спортсмена способен лишь ограниченное время, после чего наступает усталость, поэтому эффективными будут серии высокоинтенсивных нагрузок перемежающиеся с отдыхом, необходимым для восстановления сил. Время удержания максимума потребления кислорода составляет обычно не более 6 минут, именно столько и должно длиться тренирующее упражнение аэробной направленности, отдых между повторениями упражнения в этом случае должен также составлять минут 6.
Эффективными при воздействии на аэробные способности организма оказываются и серии более коротких высокоинтенсивных нагрузок длительностью от 30 до 90 секунд, чередующихся со столь же короткими интервалами отдыха. Данный метод получил название "циркуляторной" интервальной тренировки, так как наиболее эффективно воздействует на циркуляторные показатели кровеносной системы и вызывает выраженную гипертрофию сердца. Эффективность метода заключается в том, что потребление кислорода в первые минуты отдыха после прекращения нагрузки сохраняется на высоком уровне, так как происходит так называемый возврат кислородного долга (получение окислительным путем энергии, необходимой для восполнения запасов АТФ и креатинфосфата, а также для вывода молочной кислоты из мышц). Таким образом, в период короткого отдыха уровень потребления кислорода снижается не существенно, в то время как мышцы восстанавливают свои силы, восполняя запасы АТФ и креатинфосфата, избавляясь от продуктов метаболизма, после чего получают возможность вновь развить высокое усилие и вновь создать высокую потребность в кислороде. Поэтому в течение всей "циркуляторной" тренировки уровень потребления кислорода совершает незначительные колебания возле максимальных значений.
Для развития способности организма поддерживать кислотно-щелочное равновесие крови (за счет ускорения утилизации кислых продуктов метаболизма и накопления резервов буферных веществ) необходимо в ходе тренировки добиваться максимального повышения кислотности крови (естественно в пределах физиологически нормальных величин). Для чего наиболее эффективны серии высокоинтенсивных нагрузок длительностью 1-2 минуты с 1-2 минутным интервалом отдыха между подходами. Объясняется это тем, что максимум накопления молочной кислоты в крови наблюдается через некоторое время после прекращения короткой высокоинтенсивной нагрузки. Задержка в достижении максимума кислотности крови связана с необходимостью некоторого времени на вывод молочной кислоты из мышцы. Повторные нагрузки после отдыха, достаточного для значительного вывода молочной кислоты из мышц и восстановления их работоспособности, но не столь длительного, чтобы уровень кислоты в крови успел снизиться, приводят к наложению максимумов выброса кислоты в кровь друг на друга, и к значительному сдвигу кислотно-щелочного равновесия крови в кислую сторону. Усталость мышц, в виду остаточного накопления в них продуктов метаболизма, наблюдается после 3-4-х повторений такой нагрузки, поэтому эффективно будет разделить тренировку на несколько серий по 3-4 подхода с 10-15 минутным отдыхом между сериями.
Теперь разберемся с обеспечением мышц топливом. Основными источниками энергии для мышечной деятельности являются жирные кислоты, углеводы (в основном глюкоза) и аминокислоты. Запас свободных аминокислот в организме весьма незначителен, к использованию собственных белков в качестве топлива организм прибегает только в условиях недостатка энергии, например, при голодании или длительных истощающих нагрузках. При этом аминокислоты, получаемые при катаболизме собственных белков, все равно, как правило, проходят этап преобразования в печени в глюкозу. Таким образом, основными источниками энергии, для мышечной деятельности остаются жирные кислоты и глюкоза. Жирные кислоты запасаются в жировой ткани, при необходимости они извлекаются в кровь и доставляются к работающим мышцам, саркоплазма мышц располагает и собственным небольшим запасом жирных кислот. Запасы жиров в организме практически неисчерпаемы в рамках единичной тренировки, если бы марафонский бег обеспечивался исключительно жирными кислотами, то для преодоления дистанции потребовалось бы около 320 граммов жира, в то время как, даже худощавый человек располагает несколькими килограммами жиров, а у отдельных индивидов вес жировой ткани может достигать нескольких десятков килограмм. Но возможности жиров как источника энергии ограничены. Жирные кислоты активно используются только при низко-интенсивных нагрузках, так как выход энергии на одну молекулу кислорода и скорость окисления для жиров несколько ниже, чем для глюкозы, поэтому при повышении энергозатрат, митохондрии переключаются с жирных кислот на глюкозу. Более того, энергозатраты, превышающие окислительные возможности мышц, активизируют гликолиз, а в этом случае глюкоза становится незаменимым источником энергии. Глюкоза запасается организмом в основном в мышцах в виде гранул гликогена, определенный запас гликогена имеется и в печени - 100-200 грамм. При коротких интенсивных нагрузках энергозатраты мышц покрываются за счет внутренних резервов гликогена. Размер внешних запасов энергии становятся актуальным лишь при пролонгированных нагрузках. Запасы жиров, как я уже упоминал ранее, исчерпать не реально при любой разумной длительности нагрузки, поэтому при использовании жиров в качестве источника энергии имеет значение не их количество, а активность ферментов, извлекающих жирные кислоты из жировой ткани и скорость проникновения жирных кислот в митохондрии. А вот резерв гликогена в печени может сыграть решающее значение при длительных нагрузках, поэтому только запасы гликогена, но не запасы жиров, можно рассматривать в качестве фактора ограничивающего общую работоспособность организма. Соответствующие тренировки способны привести к увеличению запасов гликогена в печени и мышцах. Происходит это увеличение по уже известной схеме истощение - восстановление - сверхвосстановление. После истощающих нагрузок, при условии достаточного потребления углеводов с пищей, суперкомпенсация гликогена в печени и мышцах наступает примерно на третьи сутки. Для повышения содержания гликогена в печени используется так же метод "углеводной загрузки", когда в течение нескольких дней ограничивается потребление углеводов, затем, за день до соревнований, потребление углеводов значительно увеличивают, что приводит к резкому увеличению запасов гликогена в печени.
На этом я, пожалуй, завершу рассмотрение тренировочных методов, воздействующих на факторы общей выносливости организма, и перейду к рассмотрению собственно силовой выносливости мышц.
Способность мышц сокращаться с требуемым усилием определяется, прежде всего, насыщенностью мышц энергией. И хотя основной причиной снижения силы сокращения мышц является вовсе не отсутствие АТФ, а снижение АТФазной активности миозина и нарушения в механизме передачи возбуждения с нерва вглубь волокна, причиной упомянутых нарушений являются метаболические факторы утомления (молочная кислота, ортофосфорная кислота, АДФ и др.), а их появление в мышце связано как раз с доступностью энергии. Недостаток АТФ, производимой окислительным путем, приводит к активизации гликолиза и появлению в мышце большого количества молочной кислоты (лактата), недостаток энергии, производимой путем гликолиза, приводит к истощению запасов креатинфосфата и, соответственно, увеличению в мышце концентрации ортофосфата.
По Н.И.Волкову, при рассмотрении факторов работоспособности мышц, в зависимости от основного механизма энергообеспечения, следует различать аэробную (окисление) и анаэробную работоспособность, а анаэробная работоспособность, в свою очередь, делится на лактатную (гликолиз) и алактатную (креатинфосфат). В качестве главных критериев оценки механизмов энергообеспечения мышечной деятельности принято выделять максимальную мощность, время удержания максимальной мощности, и общую емкость механизма. Максимальная мощность - это наибольшая скорость образования АТФ в данном метаболическом процессе. От мощности механизма энергообеспечения зависит возможная сила сокращения мышц в данном режиме работы. Под емкостью понимается общее количество энергии, которое можно получить за счет данного механизма ресинтеза АТФ.
Алактатная работоспособность мышц
Максимальная алактатная мощность, с одной стороны, зависит от концентрации и активности фермента креатинкиназа (переносящего фосфатную группу с креатинфосфата на АДФ) и собственно креатинфосфата, с другой стороны мощность данной реакции зависит от потребности мышц в энергии, соответственно, определяется максимальной скоростью расхода АТФ развиваемой мышцами. Максимальная длительность удержания алактатной мощности составляет 6-12 секунд. Алактатная емкость зависит от запасов креатинфосфата в мышце. О методах тренировки алактатной мощности и емкости я уже рассказывал ранее, рассматривая методы развития силы, и сейчас не буду подробно останавливаться на этом вопросе.
Лактатная работоспособность мышц
Максимальная лактатная мощность определяется главным образом концентрацией и активностью ключевых ферментов гликолиза. Время удержания максимальной мощности данного метаболического процесса составляет 30-60 секунд, и определяется, с одной стороны, устойчивостью ферментов гликолиза к понижению рН среды (повышение кислотности среды ингибирует активность гликолитических ферментов, что подавляет энергопроизводство), и устойчивостью кислотно-щелочного равновесия внутренней среды мышц, в условиях усиленной выработки лактата. С другой стороны, время удержания максимальной гликолитической мощности лимитируется факторами утомления
мышцы, снижающими интенсивность сокращения.
Из вышесказанного следует, что для запуска адаптационных процессов, направленных на увеличение максимальной гликолитической мощности, длительность нагрузки должна соответствовать времени удержания максимальной мощности данного метаболического процесса, что составляет 30-60 секунд. Отдых между подходами должен быть достаточно длительным, для обеспечения вывода продуктов метаболизма из мышцы и развития высокой мощности гликолиза в следующем подходе. Устойчивость рН среды мышечных волокон к выбросу молочной кислоты и устойчивость ключевых ферментов к снижению рН вырабатывается в ходе тренировок, сопровождающихся максимальным накоплением лактата в мышцах. Это могут быть нагрузки высокой интенсивности, длительностью 1-1.5 минуты до наступления отказа мышц, вызванного сильным закислением, либо более короткие нагрузки, длительностью 20-40 секунд, со столь же коротким интервалом отдыха, приводящие к кумулятивному накоплению лактата в мышцах.
Гликолитическая емкость определяется главным образом запасами гликогена в мышцах, гликоген печени для процессов гликолиза не обладает достаточной мобильностью. О методах накопления мышечного гликогена, как и гликогена печени, я уже рассказывал при рассмотрении факторов общей работоспособности организма.
Аэробная работоспособность мышц
Максимальная аэробная мощность зависит главным образом от плотности митохондрий в мышечных волокнах, концентрации и активности окислительных ферментов, скорости поступления кислорода вглубь волокна. Объем кислорода доступного для окислительных реакций лимитируется, как факторами общей работоспособности организма, которые я уже ранее рассматривал, так и рядом локальных внутримышечных факторов, среди которых можно выделить капилляризацию мышц, концентрацию миоглобина, диаметр мышечного волокна (чем меньше диаметр волокна, тем лучше оно снабжается кислородом и тем выше его относительная аэробная мощность). Скорость производства АТФ за счет окисления достигает максимальных значений на 2-3-й минуте работы, что связано с необходимостью развертывания множества процессов, обеспечивающих доставку кислорода к митохондриям. Время удержания максимальной аэробной мощности составляет примерно 6 минут, в дальнейшем аэробная мощность снижается по причине усталости всех активно работающих систем организма. Соответственно, для повышения аэробной мощности мышц тренировочная нагрузка должна длиться не менее 2 минут (для выхода скорости энергопроизводства на максимум). Не имеет смысла и затягивать нагрузку дольше чем на 6 минут, при тренировке именно мощности, так как далее идет ее (мощности) снижение. Эффективным оказывается многократное повторение таких нагрузок.
В заключение хочу привести сводную таблицу тренировочного воздействия на работоспособность мышц в различных режимах работы, почерпнутую мной из диссертации М.Хосни, посвященной изучению биохимических основ интервальной тренировки. Для развития соответствующих качеств Хосни рекомендует следующие методические приемы:
Направление воздействия тренировки Интенсивность Длительность нагрузки Отдых между подходами Количество подходов
Алактатная анаэробная мощность Максимальная 7-10 с. 2-5 мин. 5-6
Алактатная анаэробная емкость Максимальная 7-10 с. 0.3-1.5 мин. 10-12
Лактатная анаэробная мощность Высокая 20-30 с. 6-10 мин. 3-4
Лактатная анаэробная емкость Высокая 40-90 с. 5-6 мин. 10-15
Аэробная мощность На максимуме потребления кислорода 0.5-2.5 мин. 0.5-3 мин. 10-15
Мышечные объемы
Ну что же, я уже рассмотрел основные методы тренировок, способствующих развитию силы и силовой выносливости мышц. Настало время приступить к рассмотрению тренировочных методик, в полной мере способствующих гипертрофии мышц, для чего следует определить тканевые и внутриклеточные структуры, от развития которых зависят мышечные объемы спортсмена.
l
lifter
Заключение
Во вступительном слове к своей работе, я обещал доказать, что система в тренировках с отягощениями существует, несмотря на все внешние различия и кажущиеся противоречия между множеством практикуемых тренировочных методик. Насколько мне это удалось судить читателю, но некоторые успехи очевидны, ибо я выявил общие принципы тренировки, лежащие в основе даже таких взаимоисключающих методик, как высокоинтенсивный тренинг Майка Ментцера и объемные тренировки «классического» бодибилдинга.
Боюсь, что из-за относительно большого объема информации, обрушенной в статье на читателя, и специфики этой информации, уложить в своей голове изложенные мной сведения в систему удалось не всем. Поэтому сейчас, пытаясь подвести итог своей работы, я постараюсь сформулировать несколько важнейших принципов, составляющих эту «Систему», взяв за основу общие принципы спортивной тренировки, приведенные Волковым Н.И., слегка уточнив их, применительно к тренировкам с отягощением немного по другому расставив акценты и дополнив некоторыми новыми принципами:
1. Принцип суперкомпенсации
Следует понимать, что мышцы растут не на тренировке, а во время отдыха после нее. Тренировочная нагрузка вызывает изменения внутренней среды мышц и организма в целом, способствуя накоплению конечных продуктов обмена веществ, растрачивая энергетические ресурсы и разрушая активно работающие клеточные структуры, что приводит к снижению функции мышц и иных систем организма. По завершению интенсивной работы организм избавляется от продуктов метаболизма и изношенных клеточных структур, одновременно активизируются процессы восстановления растраченных энергетических резервов и синтеза белка, необходимого для ремонта поврежденных тканей. Интенсивные восстановительные процессы, при условии достаточного по времени и полноценного отдыха, приводят не просто к восстановлению исходного состояния систем организма, подвергшихся тренировочному воздействию, но и обеспечивают превышение функциональных возможностей этих систем над дотренировочным уровнем (феномен суперкомпенсации). В частности, восстановление разрушенных тренировкой клеточных структур, наряду с другими факторами, способствует гипертрофии мышечной ткани. В соответствии с принципом суперкомпенсации, спортсмену следует уделять внимание не только собственно тренировкам, но и отдыху после них. Без суперкомпенсации тренировки бессмысленны.
2. Принцип сверхотягощения и зависимость доза – эффект
Зависимость между тренировочной нагрузкой и достигаемым эффектом не является линейной. Слабая нагрузка не способна вызвать восстановительные процессы такой интенсивности, чтобы обеспечить заметную суперкомпенсацию тренируемых систем организма. Существует порог величины тренировочной нагрузки, ниже которого тренировка не способна обеспечить сколь либо заметное воздействие на тренируемые функции, нагрузки ниже этого порога являются неэффективными. Принцип сверхотягощения заключается в том, что для обеспечения суперкомпенсации тренируемых систем организма, необходимо чтобы нагрузка в достаточной степени их отягощала и побуждала к развитию. Чем тяжелее тренировочная нагрузка, тем выраженнее суперкомпенсация после восстановления. Но адаптационные резервы организма не беспредельны, и при нагрузках определенной степени тяжести наблюдается обратная ситуация, - увеличение объема и интенсивности тренировки приводит к уменьшению прироста результатов и при запредельных нагрузках эффект от тренировки становится отрицательным. В этой связи очень важной задачей является определение оптимальных тренировочных нагрузок для каждого спортсмена.
3. Принцип положительного взаимодействия нагрузки
К сожалению, адаптационные изменения в организме после единичной тренировки не закрепляются надолго. При отсутствии повторной нагрузки на соответствующие системы организма их функция постепенно снижается до исходного дотренировочного уровня, и фаза суперкомпенсации постепенно сменяется фазой утраченной компенсации. Поэтому, редкие бессистемные тренировочные воздействия неспособны вызвать закрепление тренировочного эффекта и обеспечить долговременную адаптацию организма. Слишком частые нагрузки (до восстановления отягощенных тренировкой функций) приводят к отрицательному взаимодействию тренировочных эффектов и угнетению нагружаемых систем организма. И только повторные нагрузки в состоянии суперкомпенсации приводят к положительному взаимодействию тренировочных эффектов и росту функциональных возможностей спортсмена. Эффективная адаптация в течение длительного периода тренировки становится возможной только при условии положительного взаимодействия между отдельными нагрузками.
4. Комплексное воздействие тренировки и принцип специфичности
Общее воздействие тренировки на организм спортсмена складывается из воздействия на отдельные функции и системы. Тренировки с отягощением оказывают влияния главным образом на эффективность нервно-мышечного взаимодействия, алактатные и гликолитические системы энергообеспечения мышц, сократительный аппарат мышечных волокон, и в меньшей степени на аэробное энергообеспечение мышц и организма в целом. Варьирование такими параметрами тренировки как длительность и интенсивность нагрузки позволяет управлять воздействием тренировки на различные системы организма. Наиболее выраженные адаптационные изменения происходят в системах, нагружаемых в ходе тренировочного занятия в наибольшей степени.
5. Гетерохронизм восстановительных процессов и принцип циклирования нагрузки
Тренировка любой направленности одновременно воздействует на целый ряд систем организма. Согласно упомянутым ранее принципам суперкомпенсации и положительного взаимодействия, задачей спортсмена является обеспечение восстановления всех нагружаемых в ходе тренировки функций и систем. Различные системы и функции имеют различное время восстановления (гетерохронизм восстановительных процессов), варьирующееся от нескольких минут и часов (уровень АТФ и креатинфосфата в мышцах) до нескольких дней и даже недель (восстановление разрушенных клеточных структур). Феномен гетерохронизма восстановительных процессов не позволяет задать интервал отдыха между тренировками, обеспечивающий положительное взаимодействие срочных адаптационных изменений во всех функциональных системах организма. При любом раскладе, на момент новой тренировки часть функциональных систем будет в состоянии суперкомпенсации (положительное взаимодействие нагрузок), часть в состоянии утраченной компенсации (нейтральное взаимодействие нагрузок), а часть систем еще не восстановится после прежних тренировок (отрицательное взаимодействие нагрузок). Исключить отрицательное взаимодействие нагрузок, можно только при относительно редких тренировках, проводимых с частотой, обеспечивающей достижение состояния суперкомпенсации систем, имеющих самый длительный период восстановления, либо при более частых тренировках, исключив сверхотягощение долговосстанавливающихся функций (например, исключив разрушения клеточных структур), что не всегда возможно, и не всегда целесообразно. При необходимости одновременного развития нескольких тренируемых функций, обладающих свойством гетерохронизма, целесообразно проводить тренировки с частотой оптимальной для самой быстровосстанавливающейся функции, получить же восстановление систем организма, требующих более длительного отдыха, становится возможным только с использованием метода циклирования нагрузки, – варьирования объемом и интенсивностью тренировки. Метод циклирования нагрузки не предусматривает суперкомпенсации тренируемых функций к моменту каждого тренировочного занятия, снижение функциональных возможностей спортсмена и их сверхвосстановление достигается в определенные периоды тренировочного процесса, называемые микроциклами. Последовательное чередование ударных и восстановительных микроциклов позволяет получать суперкомпенсацию всех тренируемых функций, не смотря на различия во времени, требующемся на их восстановление.
6. Адаптация и принцип прогрессивной нагрузки
По мере повышения тренированности организма амплитуда возмущения внутренней среды в ответ на нагрузку уменьшается, соответственно снижается и суперкомпенсация тренируемых систем организма. Согласно принципу прогрессивной нагрузки, для обеспечения адекватного воздействия на тренируемую функцию тренировочная нагрузка должна планомерно повышаться вслед за ростом тренированности организма. С учетом рассмотренного ранее принципа сверхотягощения и зависимости доза-эффект следует понимать, что для достижения оптимального тренировочного эффекта важна не абсолютная, а относительная нагрузка, с учетом текущего уровня тренированности спортсмена.
7. Адаптация и принцип стратегического декондиционирования
Адаптационные изменения в организме со временем могут повысить устойчивость ряда систем организма к нагрузкам до такой степени, что дальнейшее тренировочное воздействие на эти системы, даже при условии повышения нагрузок, не будет вызывать эффективную ответную реакцию. В этой ситуации оказывается целесообразным на некоторое время прекратить нагрузки, вызвавшие привыкание организма, и вернуться к тренировкам адаптировавшихся систем только после их частичного декондиционирования, когда восприимчивость этих систем к нагрузке вновь возрастет. Декондиционирование высоко-адаптированных систем организма может быть достигнуто переносом акцента тренировочного воздействия на иные системы, либо полным отказом от тренировок на некоторое время. Применительно к тренировкам, направленным исключительно на развитие мышечной массы за счет сократительных структур мышечных клеток, декондиционирование систем энергообеспечения мышц (повышающее микротравмирующий эффект тренировки) может носить не только периодический характер, но и реализовываться непрерывно по ходу тренировочного процесса, путем задания длительного интервала отдыха между тренировками, - интервала, не допускающего положительного сумирования адаптационных изменений в энергетике мышц.
8. Предел адаптационных возможностей организма и принцип специализации
По мере приближения спортсмена к максимальным возможностям своего организма суперкомпенсация после тренировки снижается, даже при условии достаточной нагрузки на тренируемые системы и функции. Например, при максимальном развитии мускулатуры спортсмена происходит замедление дальнейшего прогресса не только по причине снижение восприимчивости мышц и организма к тренировке, но и вследствие приближения возможностей систем организма, обеспечивающих процессы восстановления мышечной ткани, к естественным пределам. Ограничителями прогресса становятся: гормональный фон спортсмена, возможности пищеварительной системы по обеспечению организма адекватным количеством аминокислот, микроэлементов и другими пластическими и энергетическими ресурсами, кроме того, увеличение диаметра мышечных волокон создает естественный барьер на пути доставки необходимых строительных и энергетических элементов вглубь мышечных волокон, все эти и ряд других причин приводят к снижению эффективности восстановления мышечной ткани после повреждения, что неминуемо сказывается на размере суперкомпенсационной прибавки. По мере приближения спортсмена к пределу адаптационных возможностей организма, одним из способов достижения дальнейшего прогресса, помимо фармакологического вмешательства в естественные процессы, становится отказ от попытки достижения прогресса одновременно по всем возможным направлениям, то есть специализация. Специализация позволяет, при достаточно сильном воздействии на ограниченное количество тренируемых систем спортсмена, снизить нагрузку на общие системы жизнеобеспечения, и благодаря перенаправлению всех ресурсов организма на адаптацию в определенном направлении добиться в этом направлении максимального развития. В силовых видах спорта специализация может заключаться в отказе от попыток дальнейшего развития мышечной ткани путем ее микротравмирования, и переключения исключительно на совершенствование нервно-мышечного взаимодействия, либо специализировании на одном соревновательном движении, при поддержании результатов в остальных движениях на достигнутом ранее уровне. В бодибилдинге специализация может заключаться в направлении тренировочного процесса на развитие определенных мышечных групп, на фоне поддерживающей нагрузки на основные мышечные массивы. Ряд методистов вообще считает целесообразным снижение количества выполняемых упражнений до минимума, по мере приближения спортсмена к пределу адаптационных возможностей организма.
Уверен, что немало читателей, смогли добраться до конца моей статьи лишь потому, что надеялись - вот-вот я закончу изложение «скупой теории», приступлю, наконец, к описанию «пышного зеленеющего древа жизни», и опираясь на открывшееся мне «сокровенное» знание сообщу магическую формулу «научно обоснованной» методики тренировки: когда чего и сколько им необходимо поднять для осуществления заветной мечты (например, бицепса в 50 сантиметров). Боюсь их разочаровать, но мне вспоминается чье-то мудрое изречение: «Если хочешь накормить человека, дай ему не рыбу, а удочку». Я стремился не всучить читателю очередную суперэффективную и «единственно действенную» (а как же иначе?!) тренировочную программу, а показать, по возможности все пути, ведущие к цели, и научить читателя самостоятельно выбирать свой, наиболее эффективный и для него приемлемый.
Опираясь на сформулированные выше общие принципы тренировки, с учетом конкретных сведений о различных функциональных системах организма и методах воздействия на эти системы, приведенные в III части данной статьи, опытный спортсмен в состоянии разработать для себя оптимальную тренировочную методику с учетом особенностей своего организма и стоящих перед ним целей. Давать методические советы «профессионалам» было бы с моей стороны излишне самонадеянным - теория теорией, а практический опыт в сто крат важнее, вместе с тем, у меня было желание дать и конкретные практические рекомендации, но «любителям», каковым я и сам являюсь. И я уже, было, собрался это сделать в заключение статьи, но после нескольких безуспешных попыток кратко изложить «на бумаге» мысли, роящиеся у меня в голове, я оставил это безнадежное занятие. Разработка полноценных и универсальных методических рекомендаций по построению тренировочного процесса даже спортсмена-любителя, требует сил и времени не меньше, чем мне потребовалось на постижение и изложение собственно теории. Возможно, когда ни будь позднее, я почувствую в себе силы и решусь на это неблагодарное дело, а пока мне не остается ничего другого как дать совет из заголовка этой статьи: «Думай!».
Литература:
1. А.Д Адо, М.А. Адо, В.И. Пыльницкий, Г.В. Порядина, Ю.А. Владимирова «Патологическая физиология» Москва (2001)
2. Т.Т. Березов, Б.Ф. Коровкин «Биологическая химия» Москва «Медицина» 1998 г.
3. П.Г. Богач, В.Н. Дубонос, В.Л. Зима, В.М. Данилова «Конформационные изменения миозина при различных рН раствора» сборник «Биофизика и биохимия мышечного сокращения» Москва 1976 г.
4. М.Е. Валиулина «Роль нейротрофического контроля и гуморальной регуляции синтеза миозинов скелетных мышц» Казань 1996г.
5. Н.И. Волков, Э.Н. Нессен, А.А. Осипенко, С.Н. Корсун «Биохимия мышечной деятельности» Киев (2000)
6. А.В. Володина «Посттравматическая регенерация скелетных мышц» Москва 1995г.
7. Н.А. Габелова, К.С. Алейникова «Процесс расслабления и пластификации миофибрилл» сборник «Биофизика мышечного сокращения» Москва 1966 г.
8. Гончаров Владимир «Логика тренинга», интернет публикация, www.bodybuilding.sed.lg.ua
9. В.С. Гурфинкель, Я.М. Коц, М.Л. Шик «Регуляция позы человека» Москва «Наука» 1965.
10. В.С. Гурфинкель, О.С. Левик «Скелетная мышца структура и функция» Москва «Наука» 1985 г.
11. В.В. Дынник «Внутриклеточные механизмы контроля скоростей синтеза и гидролиза АТФ в мышцах» сборник научных трудов «Механизмы контроля мышечной деятельности» Ленинград «Наука» 1985.
12. В.И. Дещеревский «Экспериментальные основы и постулаты кинетической теории мышечного сокращения» сборник научных трудов «Механизмы мышечного сокращения» Москва «Наука» 1972.
13. Н.П. Дещеревская «О возможной роли двух головок миозина в мышечном сокращении» Санкт Петербург (1991)
14. Р.П. Женевская «Нервно-трофическая регуляция пластической активности мышечной ткани» Москва 1974 г.
15. Е.К. Жуков «Очерки по нервно-мышечной физиологии» Ленинград 1969 г.
16. М.М. Заалишвили «Метаболизм мышечной клетки и некоторые вопросы энергетики мышечного сокращения» сборник «Структурные основы и регуляция биологической подвижности» Москва 1980 г.
17. И.И. Иванов «Об использовании энергии АТФ при мышечном сокращении» сборник научных трудов «Биофизика мышечного сокращения» Москва «Наука» 1966г.
18. А.А. Климов Р.К. Данилов «Миосателлитоциты» Архангельск 1981г.
19. В.Ф. Кондиаленко, Ю.Д. Сергеев, В.В. Иваницкая «Электронно-микроскопическое исследование проявлений гиперплазии мышечных волокон скелетных мышц спортсменов» Архангельск 1981 г.
20. Я. М. Коц «Физиология мышечной деятельности» Москва 1982 г.
21. А.Ф. Краснова «Биохимические изменения в мышцах и крови при мышечной деятельности силового характера» Ленинград 1960 г.
22. Н.А. Кубасова «Исследование механических и структурных свойств миозинового мостика» (2000)
23. В.П. Куликов, В.И. Кисилев «Потребность в двигательной активности» Новосибирск «Наука» (1998)
24. В.В. Леднев «Некоторые аспекты регуляции мышечного сокращения» сборник «Структурные основы и регуляция биологической подвижности» Москва 1980 г.
25. Л.Г. Магазаник Г.А. Наследов «Развитие сократительной функции мышц двигательного аппарата» Ленинград 1974 г.
26. А.Дж. Мак-Комас «Скелетные мышцы» Киев «Олимпийская литература» (2001)
27. С. МакРоберт «Думай! Бодибилдинг без стероидов» «Медиа спорт» (1998)
28. М. Ментцер «Супертренинг» «Медиа спорт» (1998)
29. В.И. Морозов «Биохимические механизмы участия лейкоцитов в метаболическом ответе скелетных мышц на физическую нагрузку» Санкт-Петербург 1997 г.
30. Б.Ф. Поглазов «Миозин и биологическая подвижность» Москва 1982 г.
31. Н.И. Разумовская «Роль нервной системы в регуляции синтеза мышечных белков» сборник «Нервный контроль структурно-функциональной организации мышц» Ленинград 1980 г.
32. Д.Ю. Романовский «Влияние инкубационной среды скелетных мышц на утомление нервно мышечного препарата и на освобождение медиатора в нервно-мышечном синапсе лягушки» Санкт Петербург 1996г.
33. А.Б. Рубин «Биофизика» в 2-х томах Москва 2000г.
34. В.А Сакс., В.В. Куприянов «Внутриклеточный транспорт энергии» сборник «Биохимия и биофизика мышц» Москва 1989 г.
35. В.А. Сакс, Э.К. Сеппет, В.В. Куприянов, В.Н. Смирнов «Механизмы энергообеспечения мышечного сокращения» сборник «Структурные основы и регуляция биологической подвижности» Москва 1980 г.
36. М. Сингер, П. Берг «Гены и геномы» Москва «Мир» 1998г.
37. С.Л. Соков, Л.П. Соков «Информационное моделирование адаптационных синдромов травматических стресс-ситуаций» Вестник Российского университета дружбы народов Серия "Медицина". 1999. № 1. С. 91-99.
38. Х. Тюннеманн, Ю. Хартманн «Современная силовая тренировка. Теория и практика» Берлин 1988г.
39. Э.Г. Улумбеков, Н.П. Ревзяков «Нейротрофический контроль фазных мышечных волокон» сборник «Нервный контроль структурно-функциональной организации мышц» Ленинград 1980 г.
40. Э.Г. Улумбеков, Ю.А. Челышев «Гистология, введение в патологию», Москва «ГЕОТАР Медицина» 1998г.
41. Г.М. Харгивс «Метаболизм в процессе физической деятельности» Киев «Олимпийская литература» (2001)
42. Фредерик К. Хетфилд «Всестороннее руководство по развитию силы» Новый Орлеан, 1983 г.
43. М. Хосни «Биоэнергетика повторной мышечной работы и эффективность интервальной тренировки в спорте» Москва 1995г.
44. Б.С. Шекман «Влияние тренировки на композицию мышц, размер и окислительный потенциал мышечных волокон у человека» Москва 1990г.
45. Р. Шмидт, Г. Тевс «Физиология человека» в 3-х томах, Москва «Мир» 1996г.
46. М.Д. Штерлинг, Е.Е. Филютина, И.И Бугаева, О.Л. Гребнева, Н.А. Плотникова «Скелетная мышца. Структурные аспекты адаптации» Новосибирск 1991 г.
47. И.Т. Штракфельд, И.Е. Москаленко «Изменения двигательного аппарата мышц при денервации» сборник «Нервный контроль структурно-функциональной организации мышц» Ленинград 1980 г.
48. Cabric D.L., Daniels J., Evanes W. Et al «Skeletal muscle enzymes and fiber composition in male and female track athletes» J Appt Physiol. –1976
49. Gonyea W, Ericson GC, Bonde-Petersen F «Skeletal muscle fiber splitting induced by weight-lifting exercise in cats»
50. Haycock B «The hypertrophy specific training», www.thinkmuscle.com
51. Hatfield F «The simplicity of periodicity», www.drsquat.com
52. Larsson L & Tesch PA (1986) «Motor unit fiber density in extremely hypertriphied skeletal muscles in man» Eur J Appl Physiol 55:1130-1136
53. Yamada S, Buffinger N, Dimario J & Strohman R (1989) «Fibroplast growth factor is stored in fiber extracellular matrix and plays a role in regulating muscle hypertrophy» Med Sci Sports Exerc 21(5): S173-s180
Во вступительном слове к своей работе, я обещал доказать, что система в тренировках с отягощениями существует, несмотря на все внешние различия и кажущиеся противоречия между множеством практикуемых тренировочных методик. Насколько мне это удалось судить читателю, но некоторые успехи очевидны, ибо я выявил общие принципы тренировки, лежащие в основе даже таких взаимоисключающих методик, как высокоинтенсивный тренинг Майка Ментцера и объемные тренировки «классического» бодибилдинга.
Боюсь, что из-за относительно большого объема информации, обрушенной в статье на читателя, и специфики этой информации, уложить в своей голове изложенные мной сведения в систему удалось не всем. Поэтому сейчас, пытаясь подвести итог своей работы, я постараюсь сформулировать несколько важнейших принципов, составляющих эту «Систему», взяв за основу общие принципы спортивной тренировки, приведенные Волковым Н.И., слегка уточнив их, применительно к тренировкам с отягощением немного по другому расставив акценты и дополнив некоторыми новыми принципами:
1. Принцип суперкомпенсации
Следует понимать, что мышцы растут не на тренировке, а во время отдыха после нее. Тренировочная нагрузка вызывает изменения внутренней среды мышц и организма в целом, способствуя накоплению конечных продуктов обмена веществ, растрачивая энергетические ресурсы и разрушая активно работающие клеточные структуры, что приводит к снижению функции мышц и иных систем организма. По завершению интенсивной работы организм избавляется от продуктов метаболизма и изношенных клеточных структур, одновременно активизируются процессы восстановления растраченных энергетических резервов и синтеза белка, необходимого для ремонта поврежденных тканей. Интенсивные восстановительные процессы, при условии достаточного по времени и полноценного отдыха, приводят не просто к восстановлению исходного состояния систем организма, подвергшихся тренировочному воздействию, но и обеспечивают превышение функциональных возможностей этих систем над дотренировочным уровнем (феномен суперкомпенсации). В частности, восстановление разрушенных тренировкой клеточных структур, наряду с другими факторами, способствует гипертрофии мышечной ткани. В соответствии с принципом суперкомпенсации, спортсмену следует уделять внимание не только собственно тренировкам, но и отдыху после них. Без суперкомпенсации тренировки бессмысленны.
2. Принцип сверхотягощения и зависимость доза – эффект
Зависимость между тренировочной нагрузкой и достигаемым эффектом не является линейной. Слабая нагрузка не способна вызвать восстановительные процессы такой интенсивности, чтобы обеспечить заметную суперкомпенсацию тренируемых систем организма. Существует порог величины тренировочной нагрузки, ниже которого тренировка не способна обеспечить сколь либо заметное воздействие на тренируемые функции, нагрузки ниже этого порога являются неэффективными. Принцип сверхотягощения заключается в том, что для обеспечения суперкомпенсации тренируемых систем организма, необходимо чтобы нагрузка в достаточной степени их отягощала и побуждала к развитию. Чем тяжелее тренировочная нагрузка, тем выраженнее суперкомпенсация после восстановления. Но адаптационные резервы организма не беспредельны, и при нагрузках определенной степени тяжести наблюдается обратная ситуация, - увеличение объема и интенсивности тренировки приводит к уменьшению прироста результатов и при запредельных нагрузках эффект от тренировки становится отрицательным. В этой связи очень важной задачей является определение оптимальных тренировочных нагрузок для каждого спортсмена.
3. Принцип положительного взаимодействия нагрузки
К сожалению, адаптационные изменения в организме после единичной тренировки не закрепляются надолго. При отсутствии повторной нагрузки на соответствующие системы организма их функция постепенно снижается до исходного дотренировочного уровня, и фаза суперкомпенсации постепенно сменяется фазой утраченной компенсации. Поэтому, редкие бессистемные тренировочные воздействия неспособны вызвать закрепление тренировочного эффекта и обеспечить долговременную адаптацию организма. Слишком частые нагрузки (до восстановления отягощенных тренировкой функций) приводят к отрицательному взаимодействию тренировочных эффектов и угнетению нагружаемых систем организма. И только повторные нагрузки в состоянии суперкомпенсации приводят к положительному взаимодействию тренировочных эффектов и росту функциональных возможностей спортсмена. Эффективная адаптация в течение длительного периода тренировки становится возможной только при условии положительного взаимодействия между отдельными нагрузками.
4. Комплексное воздействие тренировки и принцип специфичности
Общее воздействие тренировки на организм спортсмена складывается из воздействия на отдельные функции и системы. Тренировки с отягощением оказывают влияния главным образом на эффективность нервно-мышечного взаимодействия, алактатные и гликолитические системы энергообеспечения мышц, сократительный аппарат мышечных волокон, и в меньшей степени на аэробное энергообеспечение мышц и организма в целом. Варьирование такими параметрами тренировки как длительность и интенсивность нагрузки позволяет управлять воздействием тренировки на различные системы организма. Наиболее выраженные адаптационные изменения происходят в системах, нагружаемых в ходе тренировочного занятия в наибольшей степени.
5. Гетерохронизм восстановительных процессов и принцип циклирования нагрузки
Тренировка любой направленности одновременно воздействует на целый ряд систем организма. Согласно упомянутым ранее принципам суперкомпенсации и положительного взаимодействия, задачей спортсмена является обеспечение восстановления всех нагружаемых в ходе тренировки функций и систем. Различные системы и функции имеют различное время восстановления (гетерохронизм восстановительных процессов), варьирующееся от нескольких минут и часов (уровень АТФ и креатинфосфата в мышцах) до нескольких дней и даже недель (восстановление разрушенных клеточных структур). Феномен гетерохронизма восстановительных процессов не позволяет задать интервал отдыха между тренировками, обеспечивающий положительное взаимодействие срочных адаптационных изменений во всех функциональных системах организма. При любом раскладе, на момент новой тренировки часть функциональных систем будет в состоянии суперкомпенсации (положительное взаимодействие нагрузок), часть в состоянии утраченной компенсации (нейтральное взаимодействие нагрузок), а часть систем еще не восстановится после прежних тренировок (отрицательное взаимодействие нагрузок). Исключить отрицательное взаимодействие нагрузок, можно только при относительно редких тренировках, проводимых с частотой, обеспечивающей достижение состояния суперкомпенсации систем, имеющих самый длительный период восстановления, либо при более частых тренировках, исключив сверхотягощение долговосстанавливающихся функций (например, исключив разрушения клеточных структур), что не всегда возможно, и не всегда целесообразно. При необходимости одновременного развития нескольких тренируемых функций, обладающих свойством гетерохронизма, целесообразно проводить тренировки с частотой оптимальной для самой быстровосстанавливающейся функции, получить же восстановление систем организма, требующих более длительного отдыха, становится возможным только с использованием метода циклирования нагрузки, – варьирования объемом и интенсивностью тренировки. Метод циклирования нагрузки не предусматривает суперкомпенсации тренируемых функций к моменту каждого тренировочного занятия, снижение функциональных возможностей спортсмена и их сверхвосстановление достигается в определенные периоды тренировочного процесса, называемые микроциклами. Последовательное чередование ударных и восстановительных микроциклов позволяет получать суперкомпенсацию всех тренируемых функций, не смотря на различия во времени, требующемся на их восстановление.
6. Адаптация и принцип прогрессивной нагрузки
По мере повышения тренированности организма амплитуда возмущения внутренней среды в ответ на нагрузку уменьшается, соответственно снижается и суперкомпенсация тренируемых систем организма. Согласно принципу прогрессивной нагрузки, для обеспечения адекватного воздействия на тренируемую функцию тренировочная нагрузка должна планомерно повышаться вслед за ростом тренированности организма. С учетом рассмотренного ранее принципа сверхотягощения и зависимости доза-эффект следует понимать, что для достижения оптимального тренировочного эффекта важна не абсолютная, а относительная нагрузка, с учетом текущего уровня тренированности спортсмена.
7. Адаптация и принцип стратегического декондиционирования
Адаптационные изменения в организме со временем могут повысить устойчивость ряда систем организма к нагрузкам до такой степени, что дальнейшее тренировочное воздействие на эти системы, даже при условии повышения нагрузок, не будет вызывать эффективную ответную реакцию. В этой ситуации оказывается целесообразным на некоторое время прекратить нагрузки, вызвавшие привыкание организма, и вернуться к тренировкам адаптировавшихся систем только после их частичного декондиционирования, когда восприимчивость этих систем к нагрузке вновь возрастет. Декондиционирование высоко-адаптированных систем организма может быть достигнуто переносом акцента тренировочного воздействия на иные системы, либо полным отказом от тренировок на некоторое время. Применительно к тренировкам, направленным исключительно на развитие мышечной массы за счет сократительных структур мышечных клеток, декондиционирование систем энергообеспечения мышц (повышающее микротравмирующий эффект тренировки) может носить не только периодический характер, но и реализовываться непрерывно по ходу тренировочного процесса, путем задания длительного интервала отдыха между тренировками, - интервала, не допускающего положительного сумирования адаптационных изменений в энергетике мышц.
8. Предел адаптационных возможностей организма и принцип специализации
По мере приближения спортсмена к максимальным возможностям своего организма суперкомпенсация после тренировки снижается, даже при условии достаточной нагрузки на тренируемые системы и функции. Например, при максимальном развитии мускулатуры спортсмена происходит замедление дальнейшего прогресса не только по причине снижение восприимчивости мышц и организма к тренировке, но и вследствие приближения возможностей систем организма, обеспечивающих процессы восстановления мышечной ткани, к естественным пределам. Ограничителями прогресса становятся: гормональный фон спортсмена, возможности пищеварительной системы по обеспечению организма адекватным количеством аминокислот, микроэлементов и другими пластическими и энергетическими ресурсами, кроме того, увеличение диаметра мышечных волокон создает естественный барьер на пути доставки необходимых строительных и энергетических элементов вглубь мышечных волокон, все эти и ряд других причин приводят к снижению эффективности восстановления мышечной ткани после повреждения, что неминуемо сказывается на размере суперкомпенсационной прибавки. По мере приближения спортсмена к пределу адаптационных возможностей организма, одним из способов достижения дальнейшего прогресса, помимо фармакологического вмешательства в естественные процессы, становится отказ от попытки достижения прогресса одновременно по всем возможным направлениям, то есть специализация. Специализация позволяет, при достаточно сильном воздействии на ограниченное количество тренируемых систем спортсмена, снизить нагрузку на общие системы жизнеобеспечения, и благодаря перенаправлению всех ресурсов организма на адаптацию в определенном направлении добиться в этом направлении максимального развития. В силовых видах спорта специализация может заключаться в отказе от попыток дальнейшего развития мышечной ткани путем ее микротравмирования, и переключения исключительно на совершенствование нервно-мышечного взаимодействия, либо специализировании на одном соревновательном движении, при поддержании результатов в остальных движениях на достигнутом ранее уровне. В бодибилдинге специализация может заключаться в направлении тренировочного процесса на развитие определенных мышечных групп, на фоне поддерживающей нагрузки на основные мышечные массивы. Ряд методистов вообще считает целесообразным снижение количества выполняемых упражнений до минимума, по мере приближения спортсмена к пределу адаптационных возможностей организма.
Уверен, что немало читателей, смогли добраться до конца моей статьи лишь потому, что надеялись - вот-вот я закончу изложение «скупой теории», приступлю, наконец, к описанию «пышного зеленеющего древа жизни», и опираясь на открывшееся мне «сокровенное» знание сообщу магическую формулу «научно обоснованной» методики тренировки: когда чего и сколько им необходимо поднять для осуществления заветной мечты (например, бицепса в 50 сантиметров). Боюсь их разочаровать, но мне вспоминается чье-то мудрое изречение: «Если хочешь накормить человека, дай ему не рыбу, а удочку». Я стремился не всучить читателю очередную суперэффективную и «единственно действенную» (а как же иначе?!) тренировочную программу, а показать, по возможности все пути, ведущие к цели, и научить читателя самостоятельно выбирать свой, наиболее эффективный и для него приемлемый.
Опираясь на сформулированные выше общие принципы тренировки, с учетом конкретных сведений о различных функциональных системах организма и методах воздействия на эти системы, приведенные в III части данной статьи, опытный спортсмен в состоянии разработать для себя оптимальную тренировочную методику с учетом особенностей своего организма и стоящих перед ним целей. Давать методические советы «профессионалам» было бы с моей стороны излишне самонадеянным - теория теорией, а практический опыт в сто крат важнее, вместе с тем, у меня было желание дать и конкретные практические рекомендации, но «любителям», каковым я и сам являюсь. И я уже, было, собрался это сделать в заключение статьи, но после нескольких безуспешных попыток кратко изложить «на бумаге» мысли, роящиеся у меня в голове, я оставил это безнадежное занятие. Разработка полноценных и универсальных методических рекомендаций по построению тренировочного процесса даже спортсмена-любителя, требует сил и времени не меньше, чем мне потребовалось на постижение и изложение собственно теории. Возможно, когда ни будь позднее, я почувствую в себе силы и решусь на это неблагодарное дело, а пока мне не остается ничего другого как дать совет из заголовка этой статьи: «Думай!».
Литература:
1. А.Д Адо, М.А. Адо, В.И. Пыльницкий, Г.В. Порядина, Ю.А. Владимирова «Патологическая физиология» Москва (2001)
2. Т.Т. Березов, Б.Ф. Коровкин «Биологическая химия» Москва «Медицина» 1998 г.
3. П.Г. Богач, В.Н. Дубонос, В.Л. Зима, В.М. Данилова «Конформационные изменения миозина при различных рН раствора» сборник «Биофизика и биохимия мышечного сокращения» Москва 1976 г.
4. М.Е. Валиулина «Роль нейротрофического контроля и гуморальной регуляции синтеза миозинов скелетных мышц» Казань 1996г.
5. Н.И. Волков, Э.Н. Нессен, А.А. Осипенко, С.Н. Корсун «Биохимия мышечной деятельности» Киев (2000)
6. А.В. Володина «Посттравматическая регенерация скелетных мышц» Москва 1995г.
7. Н.А. Габелова, К.С. Алейникова «Процесс расслабления и пластификации миофибрилл» сборник «Биофизика мышечного сокращения» Москва 1966 г.
8. Гончаров Владимир «Логика тренинга», интернет публикация, www.bodybuilding.sed.lg.ua
9. В.С. Гурфинкель, Я.М. Коц, М.Л. Шик «Регуляция позы человека» Москва «Наука» 1965.
10. В.С. Гурфинкель, О.С. Левик «Скелетная мышца структура и функция» Москва «Наука» 1985 г.
11. В.В. Дынник «Внутриклеточные механизмы контроля скоростей синтеза и гидролиза АТФ в мышцах» сборник научных трудов «Механизмы контроля мышечной деятельности» Ленинград «Наука» 1985.
12. В.И. Дещеревский «Экспериментальные основы и постулаты кинетической теории мышечного сокращения» сборник научных трудов «Механизмы мышечного сокращения» Москва «Наука» 1972.
13. Н.П. Дещеревская «О возможной роли двух головок миозина в мышечном сокращении» Санкт Петербург (1991)
14. Р.П. Женевская «Нервно-трофическая регуляция пластической активности мышечной ткани» Москва 1974 г.
15. Е.К. Жуков «Очерки по нервно-мышечной физиологии» Ленинград 1969 г.
16. М.М. Заалишвили «Метаболизм мышечной клетки и некоторые вопросы энергетики мышечного сокращения» сборник «Структурные основы и регуляция биологической подвижности» Москва 1980 г.
17. И.И. Иванов «Об использовании энергии АТФ при мышечном сокращении» сборник научных трудов «Биофизика мышечного сокращения» Москва «Наука» 1966г.
18. А.А. Климов Р.К. Данилов «Миосателлитоциты» Архангельск 1981г.
19. В.Ф. Кондиаленко, Ю.Д. Сергеев, В.В. Иваницкая «Электронно-микроскопическое исследование проявлений гиперплазии мышечных волокон скелетных мышц спортсменов» Архангельск 1981 г.
20. Я. М. Коц «Физиология мышечной деятельности» Москва 1982 г.
21. А.Ф. Краснова «Биохимические изменения в мышцах и крови при мышечной деятельности силового характера» Ленинград 1960 г.
22. Н.А. Кубасова «Исследование механических и структурных свойств миозинового мостика» (2000)
23. В.П. Куликов, В.И. Кисилев «Потребность в двигательной активности» Новосибирск «Наука» (1998)
24. В.В. Леднев «Некоторые аспекты регуляции мышечного сокращения» сборник «Структурные основы и регуляция биологической подвижности» Москва 1980 г.
25. Л.Г. Магазаник Г.А. Наследов «Развитие сократительной функции мышц двигательного аппарата» Ленинград 1974 г.
26. А.Дж. Мак-Комас «Скелетные мышцы» Киев «Олимпийская литература» (2001)
27. С. МакРоберт «Думай! Бодибилдинг без стероидов» «Медиа спорт» (1998)
28. М. Ментцер «Супертренинг» «Медиа спорт» (1998)
29. В.И. Морозов «Биохимические механизмы участия лейкоцитов в метаболическом ответе скелетных мышц на физическую нагрузку» Санкт-Петербург 1997 г.
30. Б.Ф. Поглазов «Миозин и биологическая подвижность» Москва 1982 г.
31. Н.И. Разумовская «Роль нервной системы в регуляции синтеза мышечных белков» сборник «Нервный контроль структурно-функциональной организации мышц» Ленинград 1980 г.
32. Д.Ю. Романовский «Влияние инкубационной среды скелетных мышц на утомление нервно мышечного препарата и на освобождение медиатора в нервно-мышечном синапсе лягушки» Санкт Петербург 1996г.
33. А.Б. Рубин «Биофизика» в 2-х томах Москва 2000г.
34. В.А Сакс., В.В. Куприянов «Внутриклеточный транспорт энергии» сборник «Биохимия и биофизика мышц» Москва 1989 г.
35. В.А. Сакс, Э.К. Сеппет, В.В. Куприянов, В.Н. Смирнов «Механизмы энергообеспечения мышечного сокращения» сборник «Структурные основы и регуляция биологической подвижности» Москва 1980 г.
36. М. Сингер, П. Берг «Гены и геномы» Москва «Мир» 1998г.
37. С.Л. Соков, Л.П. Соков «Информационное моделирование адаптационных синдромов травматических стресс-ситуаций» Вестник Российского университета дружбы народов Серия "Медицина". 1999. № 1. С. 91-99.
38. Х. Тюннеманн, Ю. Хартманн «Современная силовая тренировка. Теория и практика» Берлин 1988г.
39. Э.Г. Улумбеков, Н.П. Ревзяков «Нейротрофический контроль фазных мышечных волокон» сборник «Нервный контроль структурно-функциональной организации мышц» Ленинград 1980 г.
40. Э.Г. Улумбеков, Ю.А. Челышев «Гистология, введение в патологию», Москва «ГЕОТАР Медицина» 1998г.
41. Г.М. Харгивс «Метаболизм в процессе физической деятельности» Киев «Олимпийская литература» (2001)
42. Фредерик К. Хетфилд «Всестороннее руководство по развитию силы» Новый Орлеан, 1983 г.
43. М. Хосни «Биоэнергетика повторной мышечной работы и эффективность интервальной тренировки в спорте» Москва 1995г.
44. Б.С. Шекман «Влияние тренировки на композицию мышц, размер и окислительный потенциал мышечных волокон у человека» Москва 1990г.
45. Р. Шмидт, Г. Тевс «Физиология человека» в 3-х томах, Москва «Мир» 1996г.
46. М.Д. Штерлинг, Е.Е. Филютина, И.И Бугаева, О.Л. Гребнева, Н.А. Плотникова «Скелетная мышца. Структурные аспекты адаптации» Новосибирск 1991 г.
47. И.Т. Штракфельд, И.Е. Москаленко «Изменения двигательного аппарата мышц при денервации» сборник «Нервный контроль структурно-функциональной организации мышц» Ленинград 1980 г.
48. Cabric D.L., Daniels J., Evanes W. Et al «Skeletal muscle enzymes and fiber composition in male and female track athletes» J Appt Physiol. –1976
49. Gonyea W, Ericson GC, Bonde-Petersen F «Skeletal muscle fiber splitting induced by weight-lifting exercise in cats»
50. Haycock B «The hypertrophy specific training», www.thinkmuscle.com
51. Hatfield F «The simplicity of periodicity», www.drsquat.com
52. Larsson L & Tesch PA (1986) «Motor unit fiber density in extremely hypertriphied skeletal muscles in man» Eur J Appl Physiol 55:1130-1136
53. Yamada S, Buffinger N, Dimario J & Strohman R (1989) «Fibroplast growth factor is stored in fiber extracellular matrix and plays a role in regulating muscle hypertrophy» Med Sci Sports Exerc 21(5): S173-s180
В
Верховный Смотритель
Автор ты откуда достаёшь всю эту лабуду?
l
lifter
Всю литературу собирал в течении 3-х лет по всему интернету, лабуду я отсеил сразу бывает пишут действительно её тут её нет.
В
Верховный Смотритель
лабуду я отсеил сразу бывает пишут действительно её тут её нет.
а это тогда что...и это только на поверхносный взгляд...
C6H12O6 + 6O2 + 38АДФ + 38H3PO4 = 6CO2 + 44H(2)О +
38АТФ
вот ты мне обьясни накой тебе это...ты вообще понимаешь что это...это засирание и вынос мозга...ну почему я такой совесливый и сентиментальный с возрастом стал,ведь так легко заробатывать деньги, в мире так много наивных ледей хавающих всякую муру...
l
lifter
Это же не книжка с картинками типа комикс, а научное доказательство теории, если Энштейн бы сказал про свою теорию и не обосновал её формулой то это было бы смешно так и тут не просто слова, а явный пример, если не помним что это такое надо взять учебничек химии и посмотреть как происходят хим
реакции это одна из них. Если тренерующийся просто тренеруется и всё он может и не читать, а мне интересно и это тоже это то же самое как сказать человеку не смотрт ТВ не сиди в инете, про деньги тут и речи нет я ничего не продаю все книги доступны в интернете для свободного скачивания. Меня
попросили их выложить и помоему предявлять претензии ко мне бред. МЕТАФОРА (Сказал как то слесарь астроному на кой ты смотриш на эти звёзды они же все одинаковые, а астроном подумал и ответил, "знаеш ты прав". И волки сыты и овцы целы. Каждый сам выбирает что ему надо и ненадо ни кого учить).
В
Верховный Смотритель
Каждый сам выбирает что ему надо и ненадо ни кого учить).
да никого я неучу...высказал просто свое мнение...с теми бегимотами с которыми я знаком неодин из них непрочитал за свою качковскую жизнь даже журнал "мускулы и фитнес"(так помоему),просто парни качают железо и несасирают мозг всяким ненужным хламом...а те кто много читает подобных статей так и остаются дрищами...вот в чем правда жизни...
l
lifter
Правда в том что все те бегимоты тренируются по всему готовому что уже накопленно опытом других которые этот хлам изучали на спорт кафедрах вузов или годами копили собственный опыт, а дрищи вобще не читают ни чего они подёргали тренажёр 2 раза и домой пошли не видел ни одного дрища который хоть что
либо читал такое, им это не надо, бегемот от природы бегемот. Ну а на счёт мускулы и фитнес я нечитаю я специализируюсь только на ПЛ и на внешний вид мне както наплевать. Если мой вес на тренировочной штанге и вес у бегемота равнозначны то это здорово.(много раз наблюдал за бегемотами жмущими сидя и
делающими тягу меньше чем я и вес которых за 90).
В
Верховный Смотритель
Правда в том что все те бегимоты тренируются по всему готовому что уже накопленно опытом других которые этот хлам изучали на спорт кафедрах вузов или годами копили собственный опыт,
да что там копить...ты о чем...они друг у друга переписывают меняя только цифры и упражнения местами при этом обсирая друг друга...истина одна ели хочешь просто поправить здоровье и отдаленно походить на человека качающего жэлезо то просто иди в качалку и качайся...если хочешь походить на парней со страниц глянцевых журналов то хоть усрись на изучении этих методик без генэтики + фармы ты никто...
бегемот от природы бегемот
незнаю бегимот ли я,при росте 185 см вес 108 кг...за 7 лет непрерывного занятия в качалке прибавил 24 кг...
много раз наблюдал за бегемотами жмущими сидя и делающими тягу меньше чем я и вес которых за 90).
ты знаешь если ты жмешь на раз 180 кг это незначит что чел который жмет 110 - 120 кг на 8 -12 раз неимеет силы,просто он хочет заниматся дольше тебя и поэтому избегает травм...
D
DеnisТV©
Авторизуйтесь, чтобы принять участие в дискуссии.