ФЛУД -=ХАХАХА=-
К
К О Т
OFF
мдя Саня ты теперь самый большой флудер которого я знаю;-)
мдя Саня ты теперь самый большой флудер которого я знаю;-)
Л
Лиса_Джинджер
а вот и я! кое-как карточку активировала-инет ТУПИТ!!!
Л
Лиса_Джинджер
[Сообщение удалено пользователем 07.07.2006 02:36]
К
К О Т
а я себе синхрофазатрон прикупил ща буду атомы расщиплять;-)
а вопще уважаемы коллеги с точки зрения бональной эррудиции мы не можем игнорировать тенденцию порадоксальную эмоции ибо сектор нашего индивидуума практически равен нулю, следователь ваш здешний флуд абсолютно нецелесообразен;-) кто смог прочитать тому респек!
а вопще уважаемы коллеги с точки зрения бональной эррудиции мы не можем игнорировать тенденцию порадоксальную эмоции ибо сектор нашего индивидуума практически равен нулю, следователь ваш здешний флуд абсолютно нецелесообразен;-) кто смог прочитать тому респек!
СПЕКТРОСКОПИЯ РАДИОВОЛНОВЫХ ИЗЛУЧЕНИЙ ЛОКАЛИЗОВАННЫХ ФОТОНОВ: ВЫХОД НА КВАНТОВО-НЕЛОКАЛЬНЫЕ БИОИНФОРМАЦИОННЫЕ ПРОЦЕССЫ
Общие принципы работы лазерной установки, демонстрирующей явление перехода оптических фотонов в радиоволны
Ранее нами разработана лазерная установка, с помощью которой мы обнаружили явление перехода красных когерентных фотонов в радиоволны широкого спектра. Мы предложили предварительное объяснение этого явления [21]. Предлагаемое авторами настоящее исследование существенно дополняет ранее высказанные ими положения и является определенным этапом в теоретико-экспериментальном обосновании нового вида спектроскопии веществ { Приоритет на патент от 06.01.1999г. №99/01/Л (Федеральный институт промышленной собственности. Группа получающего ведомства РСТ. Старфилд, ЛТД).} с условным названием – поляризационная лазерно-радиоволновая спектроскопия (ПЛР-спектроскопия). Такая спектроскопия предназначена для исследования неизвестных ранее, вращательно-колебательных квантово-молекулярных характеристик твердых, жидких, газообразных веществ, а также плазменных состояний. Предлагаемый вариант ПЛР-спектроскопии использует узкий оптический диапазон - красный свет, но в дальнейшем планируется использование более коротковолновые диапазоны видимой области.
Для целей ПЛР-спектроскопии был изготовилен специальный He-Ne лазер () с генерацией двух ортогонально связанных по интенсивности, оптических мод, которые могут между собой взаимодействовать таким образом, что сумма их интенсивностей остается неизменной. При взаимодействии хотя бы одной моды с веществом, отраженное или рассеянное излучение от которого возвращается в оптический резонатор, происходит перераспределение интенсивности этих оптических мод по закону изменения поляризации, соответствующей новому состоянию после взаимодействия луча с динамическими микрополяризаторами, находящимися в сечении освещаемой площадки исследуемого вещества. Одна из мод лазера, при определенном режиме генерации, способна в процессе взаимодействия с веществом быть причиной излучения нашей установкой модулированных радиоволн широкого спектра, коррелированных с модуляциями в оптических модах излучения лазера. Эти модуляции зависят от вращательных колебаний микроструктурных компонентов (например, доменов кристаллов) исследуемых веществ и их оптической активности. Частотный интервал индуцированных радиоволн, в соответствии с теоретической моделью (см. ниже), лежит в диапазоне от 2 до 0. Максимум такого радиоизлучения располагается в районе 1 Мгц. Радиоволновой сигнал после детектирования подается на АЦП компьютера со специальной программой обработки. На выходе регистрируется фурье спектр радиоизлучения, характеризующий поляризационно-динамические свойства изучаемых веществ, с которыми взаимодействует один из лазерных лучей, а также спектральную память изучаемых веществ. Второй луч при этом возвращается в резонатор лазера для создания резонансного взаимодействия с атомными осцилляторами газовой смеси. Данный лазер способен также генерировать, кроме основной (оптической) частоты, радиоволны широкого диапазона длин волн. Причиной этого явления, как мы полагаем, является неупругое рассеяние и локализация света основной лазерной моды на системе неоднородностей зеркал резонатора лазера. Механизм локализации (локализация в неупругом канале рассеяния) подробно описан. В частности, выдвигается положение, что в резонаторе существует также и упруго рассеянный локализованный свет (см. теор. часть). Генерируемое лазером радиоволновое излучение способно “считывать информацию”, например, с препаратов ДНК (см. экспер. часть). Механизм “считывания” напоминает механизм обычного индуцированного излучения. Возможность “открывать и закрывать” лазерный резонатор позволяет локализовать или “записать” в нем собственные “спектры” различных тестируемых объектов. Радиоволновое излучение считывает и ретранслирует такие спектры. При этом был обнаружен эффект спектральной памяти: в течение определенного макроскопического времени воспроизводятся радиоволновые спектры объектов, отражающих луч обратно в резонатор и затем удаленных из зоны экспозиции. Так были зарегистрированы спектры ДНК и выявлена их высокая биологическая активность, вероятно, связанная с волновым типом переноса генетико-метаболической информации (см. экспер. часть).
Общие принципы работы лазерной установки, демонстрирующей явление перехода оптических фотонов в радиоволны
Ранее нами разработана лазерная установка, с помощью которой мы обнаружили явление перехода красных когерентных фотонов в радиоволны широкого спектра. Мы предложили предварительное объяснение этого явления [21]. Предлагаемое авторами настоящее исследование существенно дополняет ранее высказанные ими положения и является определенным этапом в теоретико-экспериментальном обосновании нового вида спектроскопии веществ { Приоритет на патент от 06.01.1999г. №99/01/Л (Федеральный институт промышленной собственности. Группа получающего ведомства РСТ. Старфилд, ЛТД).} с условным названием – поляризационная лазерно-радиоволновая спектроскопия (ПЛР-спектроскопия). Такая спектроскопия предназначена для исследования неизвестных ранее, вращательно-колебательных квантово-молекулярных характеристик твердых, жидких, газообразных веществ, а также плазменных состояний. Предлагаемый вариант ПЛР-спектроскопии использует узкий оптический диапазон - красный свет, но в дальнейшем планируется использование более коротковолновые диапазоны видимой области.
Для целей ПЛР-спектроскопии был изготовилен специальный He-Ne лазер () с генерацией двух ортогонально связанных по интенсивности, оптических мод, которые могут между собой взаимодействовать таким образом, что сумма их интенсивностей остается неизменной. При взаимодействии хотя бы одной моды с веществом, отраженное или рассеянное излучение от которого возвращается в оптический резонатор, происходит перераспределение интенсивности этих оптических мод по закону изменения поляризации, соответствующей новому состоянию после взаимодействия луча с динамическими микрополяризаторами, находящимися в сечении освещаемой площадки исследуемого вещества. Одна из мод лазера, при определенном режиме генерации, способна в процессе взаимодействия с веществом быть причиной излучения нашей установкой модулированных радиоволн широкого спектра, коррелированных с модуляциями в оптических модах излучения лазера. Эти модуляции зависят от вращательных колебаний микроструктурных компонентов (например, доменов кристаллов) исследуемых веществ и их оптической активности. Частотный интервал индуцированных радиоволн, в соответствии с теоретической моделью (см. ниже), лежит в диапазоне от 2 до 0. Максимум такого радиоизлучения располагается в районе 1 Мгц. Радиоволновой сигнал после детектирования подается на АЦП компьютера со специальной программой обработки. На выходе регистрируется фурье спектр радиоизлучения, характеризующий поляризационно-динамические свойства изучаемых веществ, с которыми взаимодействует один из лазерных лучей, а также спектральную память изучаемых веществ. Второй луч при этом возвращается в резонатор лазера для создания резонансного взаимодействия с атомными осцилляторами газовой смеси. Данный лазер способен также генерировать, кроме основной (оптической) частоты, радиоволны широкого диапазона длин волн. Причиной этого явления, как мы полагаем, является неупругое рассеяние и локализация света основной лазерной моды на системе неоднородностей зеркал резонатора лазера. Механизм локализации (локализация в неупругом канале рассеяния) подробно описан. В частности, выдвигается положение, что в резонаторе существует также и упруго рассеянный локализованный свет (см. теор. часть). Генерируемое лазером радиоволновое излучение способно “считывать информацию”, например, с препаратов ДНК (см. экспер. часть). Механизм “считывания” напоминает механизм обычного индуцированного излучения. Возможность “открывать и закрывать” лазерный резонатор позволяет локализовать или “записать” в нем собственные “спектры” различных тестируемых объектов. Радиоволновое излучение считывает и ретранслирует такие спектры. При этом был обнаружен эффект спектральной памяти: в течение определенного макроскопического времени воспроизводятся радиоволновые спектры объектов, отражающих луч обратно в резонатор и затем удаленных из зоны экспозиции. Так были зарегистрированы спектры ДНК и выявлена их высокая биологическая активность, вероятно, связанная с волновым типом переноса генетико-метаболической информации (см. экспер. часть).
КВАНТОВАЯ ТЕЛЕПОРТАЦИЯ -
ЕЩЕ ОДИН ВЫЗОВ ЗДРАВОМУ СМЫСЛУ
В тонких физических экспериментах удалось, кажется, сделать то, что самые смелые фантасты считали не более чем нереалистичной фантастикой: исследуя одну из связанных когда-то частиц, можно мгновенно (со сверхсветовой скоростью!) с любых расстояний получать информацию о состоянии другой частицы.
Герои научно-фантастических фильмов и романов давно освоили телепортацию - удобный способ мгновенного перемещения во времени и в пространстве. Что же касается реальной жизни, то здесь подобное продолжает оставаться лишь мечтой.
Тем не менее еще в 1935 году Альберт Эйнштейн совместно со своими коллегами Б. Подольским и Н. Розеном предложил эксперимент по телепортации если не вещества, то информации. Этот способ сверхсветовой связи получил название "Парадокс ЭПР".
Суть парадокса состоит в следующем. Есть две частицы, которые какое-то время взаимодействуют, образуя единую систему. С позиций квантовой механики эту связанную систему можно описать некоей волновой функцией. Когда взаимодействие прекращается и частицы разлетаются очень далеко, их по-прежнему будет описывать та же функция. Но состояние каждой отдельной частицы неизвестно в принципе: это вытекает из соотношения неопределенностей. И только когда одна из них попадает в приемник, регистрирующий ее параметры, у другой появляются (именно появляются, а не становятся известными!) соответствующие характеристики. То есть возможна мгновенная "пересылка" квантового состояния частицы на неограниченно большое расстояние. Телепортации самой частицы, передачи массы при этом не происходит.
Похожим образом ведет себя разорвавшийся на две части снаряд: если до взрыва он был неподвижен, суммарный импульс его осколков равен нулю. "Поймав" один осколок и измерив его импульс, можно мгновенно назвать величину импульса второго осколка, как бы далеко он ни улетел.
Сегодня по крайней мере две научные группы - австрийские исследователи из университета в Инсбруке и итальянские из университета "La Sapienza" в Риме - утверждают, что им удалось осуществить телепортацию характеристик фотона в лабораторных условиях.
Эксперименты в Инсбруке передавали "послания" в виде поляризации фотона ультрафиолетового излучения. Этот фотон взаимодействовал в оптическом смесителе с одним из пары связанных фотонов. Между ними в свою очередь возникала квантово-механическая связь, приводящая к поляризации новой пары. Таким образом экспериментаторы добились очень интересного результата: они научились связывать фотоны, не имеющие общего происхождения. Это открывает возможность для проведения целого класса принципиально новых экспериментов.
В результате измерения второй фотон первоначальной связанной пары также приобретал некоторую фиксированную поляризацию: копия первоначального состояния "фотона-посланника" передавалась удаленному фотону. Наиболее сложно было доказать, что квантовое состояние действительно телепортировано: для этого необходимо точно знать, как установлены детекторы при измерении общей поляризации, и потребовалось тщательно синхронизовать их.
Вместо того чтобы использовать отдельный "фотон-посланник", итальянские исследователи предложили рассматривать одновременно две характеристики каждой связанной частицы: поляризацию и направление движения. Это позволяет теоретически описывать их как отдельные частицы и в то же самое время, проводя измерения только с первой частицей, получать характеристики второй, не трогая ее, - осуществлять телепортацию.
Достигнув успехов в телепортации фотонов, экспериментаторы уже планируют работы с другими частицами - электронами, атомами и даже ионами. Это позволит передавать квантовое состояние от короткоживущей частицы к более стабильной. Таким способом можно будет создавать запоминающие устройства, где информация, принесенная фотонами, хранилась бы на ионах, изолированных от окружающей среды.
После создания надежных методов квантовой телепортации возникнут реальные предпосылки для создания квантовых вычислительных систем (см. "Наука и жизнь" № 6, 1996 г.). Телепортация обеспечит надежную передачу и хранение информации на фоне мощных помех, когда все другие способы оказываются неэффективными, и может быть использована для связи между несколькими квантовыми компьютерами. Кроме того, и сами разработанные исследователями методы имеют огромное значение для будущих экспериментов по квантовой механике, для проверки и уточнения целого ряда современных физических теорий.
ЕЩЕ ОДИН ВЫЗОВ ЗДРАВОМУ СМЫСЛУ
В тонких физических экспериментах удалось, кажется, сделать то, что самые смелые фантасты считали не более чем нереалистичной фантастикой: исследуя одну из связанных когда-то частиц, можно мгновенно (со сверхсветовой скоростью!) с любых расстояний получать информацию о состоянии другой частицы.
Герои научно-фантастических фильмов и романов давно освоили телепортацию - удобный способ мгновенного перемещения во времени и в пространстве. Что же касается реальной жизни, то здесь подобное продолжает оставаться лишь мечтой.
Тем не менее еще в 1935 году Альберт Эйнштейн совместно со своими коллегами Б. Подольским и Н. Розеном предложил эксперимент по телепортации если не вещества, то информации. Этот способ сверхсветовой связи получил название "Парадокс ЭПР".
Суть парадокса состоит в следующем. Есть две частицы, которые какое-то время взаимодействуют, образуя единую систему. С позиций квантовой механики эту связанную систему можно описать некоей волновой функцией. Когда взаимодействие прекращается и частицы разлетаются очень далеко, их по-прежнему будет описывать та же функция. Но состояние каждой отдельной частицы неизвестно в принципе: это вытекает из соотношения неопределенностей. И только когда одна из них попадает в приемник, регистрирующий ее параметры, у другой появляются (именно появляются, а не становятся известными!) соответствующие характеристики. То есть возможна мгновенная "пересылка" квантового состояния частицы на неограниченно большое расстояние. Телепортации самой частицы, передачи массы при этом не происходит.
Похожим образом ведет себя разорвавшийся на две части снаряд: если до взрыва он был неподвижен, суммарный импульс его осколков равен нулю. "Поймав" один осколок и измерив его импульс, можно мгновенно назвать величину импульса второго осколка, как бы далеко он ни улетел.
Сегодня по крайней мере две научные группы - австрийские исследователи из университета в Инсбруке и итальянские из университета "La Sapienza" в Риме - утверждают, что им удалось осуществить телепортацию характеристик фотона в лабораторных условиях.
Эксперименты в Инсбруке передавали "послания" в виде поляризации фотона ультрафиолетового излучения. Этот фотон взаимодействовал в оптическом смесителе с одним из пары связанных фотонов. Между ними в свою очередь возникала квантово-механическая связь, приводящая к поляризации новой пары. Таким образом экспериментаторы добились очень интересного результата: они научились связывать фотоны, не имеющие общего происхождения. Это открывает возможность для проведения целого класса принципиально новых экспериментов.
В результате измерения второй фотон первоначальной связанной пары также приобретал некоторую фиксированную поляризацию: копия первоначального состояния "фотона-посланника" передавалась удаленному фотону. Наиболее сложно было доказать, что квантовое состояние действительно телепортировано: для этого необходимо точно знать, как установлены детекторы при измерении общей поляризации, и потребовалось тщательно синхронизовать их.
Вместо того чтобы использовать отдельный "фотон-посланник", итальянские исследователи предложили рассматривать одновременно две характеристики каждой связанной частицы: поляризацию и направление движения. Это позволяет теоретически описывать их как отдельные частицы и в то же самое время, проводя измерения только с первой частицей, получать характеристики второй, не трогая ее, - осуществлять телепортацию.
Достигнув успехов в телепортации фотонов, экспериментаторы уже планируют работы с другими частицами - электронами, атомами и даже ионами. Это позволит передавать квантовое состояние от короткоживущей частицы к более стабильной. Таким способом можно будет создавать запоминающие устройства, где информация, принесенная фотонами, хранилась бы на ионах, изолированных от окружающей среды.
После создания надежных методов квантовой телепортации возникнут реальные предпосылки для создания квантовых вычислительных систем (см. "Наука и жизнь" № 6, 1996 г.). Телепортация обеспечит надежную передачу и хранение информации на фоне мощных помех, когда все другие способы оказываются неэффективными, и может быть использована для связи между несколькими квантовыми компьютерами. Кроме того, и сами разработанные исследователями методы имеют огромное значение для будущих экспериментов по квантовой механике, для проверки и уточнения целого ряда современных физических теорий.
уу с этим хватит. Добавлю от себя, сканирование всех квантов в теле человека займет кучу времени, за которое все человечество успеет погибнуть, но это еще не все, человека придется убить, расщепив на кванты и послать куда подальше. Помимо этого не факт что получится именно тот человек, ибо душу
передать трудно, и хрен знает есть ли она. могу завтра подробнее разогнать
Л
Лиса_Джинджер
а вопще уважаемы коллеги с точки зрения бональной эррудиции мы не можем игнорировать тенденцию порадоксальную эмоции ибо сектор нашего индивидуума практически равен нулю, следователь ваш здешний флуд абсолютно нецелесообразен кто смог прочитать тому респек!
а я то поняла!!!ля-ля-ля!!!! я ГЕНИЙ!!!
Л
Лиса_Джинджер
саня!!! Не грузи меня на ночь!!! И ХВАТИТ МАТЕРИТЬСЯ В ТУАЛЕТЕ!!!)
[Сообщение изменено пользователем 07.07.2006 02:38]
[Сообщение изменено пользователем 07.07.2006 02:38]
ЭХ ЯБЛОЧКО, ДА МОЕ ЗРЕЛОЕ!
ИДЕТ БАРЫШНЯ, КОЖА БЕЛАЯ!
КОЖА БЕЛАЯ! ШУБА ЦЕННАЯ!
ЕСЛИ ДАШЬ ЧЕГО, БУДЕШЬ ЦЕЛАЯ!!!!!
ИДЕТ БАРЫШНЯ, КОЖА БЕЛАЯ!
КОЖА БЕЛАЯ! ШУБА ЦЕННАЯ!
ЕСЛИ ДАШЬ ЧЕГО, БУДЕШЬ ЦЕЛАЯ!!!!!
ЭХ ЯБЛОЧКО! ДА С ГОЛУБИКОЮ!
ПОДОЙДИ БУРЖУЙ, ГЛАЗИК ВЫКОЛЮ!
ОДИН ВЫКОЛЮ, ДРУГОЙ ОСТАНЕТСЯ!
ЧТОБ ВИДАЛ ГОВНО, КОМУ КЛАНЯТЬСЯ!!!
ПОДОЙДИ БУРЖУЙ, ГЛАЗИК ВЫКОЛЮ!
ОДИН ВЫКОЛЮ, ДРУГОЙ ОСТАНЕТСЯ!
ЧТОБ ВИДАЛ ГОВНО, КОМУ КЛАНЯТЬСЯ!!!
К
К О Т
Саня хошь подскажу отличную идею. Приедь к рыжей и установи ей асю;-) всем спокойной ночи.
Авторизуйтесь, чтобы принять участие в дискуссии.